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ABSTRACT

The objective of this dissertation is to carry out dynamic modeling, analysis and control of

power systems with Renewable Energy Sources (RES) such as: Photovoltaic (PV) power sources

and wind farms. The dissertation work is mainly focused on microgrid since it plays a major

role in modern power systems and tend to have higher renewable power penetration. Two main

theoretical concepts, dynamic phasor and impedance modeling have been adopted to model and

analyze the power systems/mocrogrids with RES. The initial state calculation which is essential

for small signal analysis of a system is carried out as the first step of the dissertation work. Dy-

namic phasor and impedance modeling techniques have been utilized to model and analyze power

systems/micogrids as the second phase of the work. This part consists of two main studies. First

case investigates the impedance modeling of Thyristor Controller Series Capacitor (TCSC) for sub-

synchronous resonance (SSR) analysis where a wind farm is connected to a power system through

series compensated line. Second case utilizes the dynamic phasor concept to model a microgrid

in unbalanced condition. Here the unbalance is caused by a single phase PV connected to the

microgrid. Third Phase of the dissertation work includes upper level control of the microgrid. Here

prediction and optimization control for a microgrid with a wind farm, a PV system, an energy

storage system and loads is evaluated. The last part of the dissertation work focuses on real time

modeling and hardware in loop simulation test bed for microgrid applications.

This dissertation has led to four journal papers (three accepted, one submitted) and five con-

ference papers.

x
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CHAPTER 1

INTRODUCTION

1.1 Background

Generating electricity from clean and environmental friendly resources is the worldwide trend

to develop the future power grid. The government’s interest in promoting renewable energy by

introducing renewable energy credit and the implementation of the carbon tax in some countries

promotes rapid development of renewable energy in the world. The wind power and solar power

can be considered as most promising and fastest growing renewable energy sources due to their

low generation cost and the minimum environmental impact. Among these, wind power accounted

for 42 % of all new electrical capacity added to the United States electrical system in 2008 [1]

however, it is still a relatively small fraction of the total capacity in the USA. Wind power has the

potential to reach 25 % of U.S. electricity capacity by 2050 [1]. Even though Renewable Energy

Sources (RES) play a major role in modern power grid, due to intermittent nature, operational

implications will occur. Hence it is essential to study the impact of renewable energy sources on

the power system.

In modern power system, the microgrid concept has received much attention, due to its reliabil-

ity, efficiency and low operation cost. Architecture of the microgrid can be explained in two levels,

component level and the management level (control level). The microgrid is in fact a sub-part of a

power distribution system. It consists of Distributed Energy Resources (DERs) and loads. DERs

include Distributed Generation (DG) units and Distributed Storage (DS) units. Loads include

residential type loads, commercial type loads and industrial parks. Microgrid is connected to the

utility grid through Point of Common Coupling (PCC) which is located at the low voltage bus

1
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of the substation transformer. DG units can be sub-categorized based on their interface with the

Microgrid:

• Conventional DG units with rotating machines

• DG units with power electronic converters

Microgrid control level architecture has three hierarchical levels as shown in Fig.1.1:

• Distributed Network Operator (DNO)

• Microgrid Central Controller (MCC)

• Local Controller (LC)

DNO

Microgrid X

MCC

LC LC LC

Microgrid ZMicrogrid Y

Figure 1.1. Microgrid control level hierarchy.

DNO is responsible for controlling the distributed network, which implies that it controls more

than one microgrid. Each microgrid has one MCC which is the main controller of the microgrid.

LCs are the lowest level controllers which are associated with each DER. Two control strategies are

generally exercised in microgrid control and they are centralized control and decentralized control.

In centralized control, MCC is responsible for a major part of control. It issues the commands

such as power production set points to the DERs and set points for loads to be served and shed. The

function of the LCs in centralized control is to follow the MCC instructions. The main disadvantage

2
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of the centralized control is the high cost involved with the fast communication system. This

problem can be avoided by occupying decentralized control in power management. Droop control

is an example of a decentralized control [2, 3, 4].

There are two possible operational scenarios in a microgrid.

• Grid following operation

• Islanded operation

In grid following operation microgrid follows the voltage and the frequency of the utility grid.

Since the voltage and the frequency at the PCC are controlled by the utility grid, control function

of dis-patchable DER units will be active/reactive power control. Power set points for DERs will

be specified by the utility grid control based on power dispatch strategy.

Islanded operation of a microgrid will be formed when the microgrid is disconnected from the

main grid. This can happen due to either pre-planned switching (for maintenance) or unplanned

switching incidents (due to faults). Since microgrid is disconnected from the main grid, voltage and

frequency of the microgrid should be controlled by itself. Hence, one or more DER units should be

assigned to regulate the voltage and the frequency of the system and MCC will be responsible for

implementing power dispatch strategy.

1.2 Statement of Problem

With the rapid development of microgrid concept, it is required to identify system stability

limits and incorporate these constraints into upper level decision making process. Compared to the

conventional three-phase power systems, microgrids are more prone to unbalanced and harmonic

operating conditions due to the distribution system nature and the penetration of power electronic

devices. In order to address the stability issue, it is vital to model microgrids with renewable energy

sources such as wind and PV with power electronic converters.

First, accurate microgrid models which are able to capture unbalance and the harmonics have to

be implemented. Here the dynamic phasor approach and the impedance modeling techniques have

been utilized as the main tools in the dissertation. Impedance modeling approach is employed to

3
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obtain a linear relationship between voltage and current for each block device. The key advantage of

impedance modeling is to convert circuit analysis problems into the format of closed-loop feedback

control problems. Therefore, rich linear control system analysis tools such as Bode plots and Nyquist

plots can be used to detect instability. To derive accurate impedance models for subsystems under

harmonic scenarios, the dynamic phasor concept is adopted to obtain time-varying complex Fourier

coefficients for state variables. The dynamic phasor technique can not only facilitate the derivation

of impedance models, but also facilitate to build analytical nonlinear system models suitable for

small signal analysis. Compared to an instantaneous variable based system where the current

and voltage are periodic at steady-state and it is not possible to derive a small signal stability

model, dynamic phasor based system has constant value variables at steady-state. Both dynamic

phasor and impedance modeling techniques are applied mainly in this research to develop microgrid

component models and conduct stability analysis.

Second, proper initial values have to be obtained for small signal analysis. Small signal analysis

is adopted for the work presented in this dissertation, to identify the stability limits of a power

with renewable energy integration. Here, a sweeping method initialization technique is proposed

to calculate the initial states of an unbalance microgrid. The dynamic phasor approach is utilized

to capture unbalance components of the system.

Third, identified renewable energy constraints have been incorporated into microgrid system-

level decision making procedure. Here a multi-horizon power dispatch algorithm is implemented,

utilizing an energy storage system in a microgrid with wind and PV integration.

Fourth, modeling of microgrid components in real time simulator. Real time simulations and the

Hardware in Loop (HIL) simulations are the state of the art techniques adopted in today’s power

system research. Hence the proposed microgrid components are modeled in Real-time simulator

and HIL simulations are carried out as demonstrate the validity of the models used above.

4
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1.3 Outline of the Dissertation

The structure of the dissertation is organized as follows.

Chapter 1 provides an introduction of the research problems and their background information.

Chapter 2 gives presents the review of relevant literature and theory. Dynamic phasor approach

and the impedance modeling technique concepts are presented in detail.

Chapter 3 presents initialization and steady state calculations for power systems with renewable

energy integration. Here two case studies are considered. First one is a power system with wind

power integration and the second one is an unbalanced microgrid with single phase PV power

integration.

Chapter 4 demonstrates the capability of dynamic phasor and impedance modeling techniques.

Here, the well known SSR problem in the series compensated network is analyzed in detail, utilizing

above techniques to identify the stability limits of the system. Effect of TSCS compensated line, is

analyzed and its limitations and the advantages are identified.

Chapter 5 develops a detailed model for unbalanced microgrid. Single phase PV, induction

machine, power factor correction and loads are modeled and several case studies conducted to

study the system.

Chapter 6 presents the upper level control of a microgrid. Here, the microgrid consist of a PV

system, wind farm, a battery storage and some loads. PV power, wind power and load power are

predicted using prediction algorithms and battery storage is dispatched accordingly to optimized

the power import of the microgrid.

Chapter 7 investigates the intermittent load applications in microgrid. Here a pulsed power load

is implemented as intermittent load and VSC based inverter is proposed to mitigate the system

dynamics due to the load behavior.

Chapter 8 develops test bed for microgrid simulations using real time simulations and hardware

in loop simulations.

Chapter 9 summarizes the research conclusions.

5
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CHAPTER 2

REVIEW OF RELEVANT LITERATURE AND THEORY

2.1 Dynamic Phasor Based Modeling and Analysis

The rapid evolution of wind energy leads to redefine the grid connection requirements of the

wind generation systems. Among these, fault ride-through capability can be considered as one of

the major requirement [5, 6, 7, 8, 9]. These new rules require wind farms to withstand steady state

voltage unbalance and transient voltage unbalance without disconnecting the wind generators from

the grid [6, 7]. Doubly Fed Induction Generator (DFIG) is the most employed wind generator

in today’s wind power generation [10]. Although the DFIG offers several advantages over fixed-

speed generators [8] it is very sensitive to grid voltage disturbances [11]. Unbalanced distribution

system will induced unbalanced current in the DFIG creating unequal heating and power loss on

the winding as well as torque pulsations in the generator[10, 11, 8, 12, 13, 7]. This may even cause

a control system instability in the DFIG [10]. Hence these issues should be addressed in the control

architecture of the DFIG.

The dq based time domain simulations provide much accurate time response of a three phase

balanced system. However the major problem involved with dq model is that negative sequence

components in abc are converted to 120 Hz ac variables in dq. Hence dq based models offer

no capability to perform small signal analysis under unbalanced conditions. On the other hand,

dynamic phasor based modeling [14] has the capability of both accurate time-domains simulation

and small signal analysis [15, 14, 16, 17].
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2.1.1 Dynamic Phasor Concept

The Dynamic phasor concept is defined based on the Fourier series representation of a complex

time domain waveform x(τ)in the interval τ ∈ (τ − T, t) [14],

x(τ) =
∞∑

k=−∞
Xk(t).e

jkωτ (2.1)

Here ω = 2π
T and Xk(t) is the kth complex Fourier coefficient also referred as dynamic phasor.

Although these coefficients are functions of time they vary slowly with the time which makes the

dynamic phasor representation is a good candidate for small signal models. Dynamic coefficients of

a complex time domain waveform x(τ)can be obtained using the following average operation [14].

Xk(t) =
1

T

∫ t

t−T
x(τ)ejkωτ dτ = 〈x〉k(t); (2.2)

A good approximation of the original signal can be achieved by choosing suitable k values.

One of the most important properties of dynamic phasor is the relationship between derivative of

original signal and the derivative of dynamic coefficient, which can be obtained using (2.1).

〈dx
dt
〉k =

dXk

dt
+ jkωXk; (2.3)

These concepts are applied in subsequent sections of this report for modeling components in

microgrid.

2.2 Impedance Modeling

Impedance based models can be utilized to investigate electric system stability and insights.

Nyquist stability criterion for impedance model has been widely employed in power electronic based

systems to investigate stability and control design [18] .
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Figure 2.1. Voltage source and a load.

2.2.1 Impedance Based Nyquist Stability Criterion

The current in the system presented Fig.2.1 can be written as,

I(s) =
V (s)

Zs(s) + Zl(s)
=
V (s)

Zl(s)

1

1 + Zs(s)
Zl(s)

(2.4)

Assuming the system is stable when the load is powered from ideal source, which implies V (s)
Zl(s)

is

stable , then 1

1+
Zs(s)
Zl(s)

decides the system stability. In order to system to be stable, the denominator

1 + Zs(s)
Zl(s)

should have all zeros in the open left-half-plane. Based on Nyquist stability criterion,

if and only if the number of counterclockwise encirclement around (-1,0) of Zs(s)
Zl(s)

is equal to the

number of the right-half-plane (RHP) poles of Zs(s)
Zl(s)

then the system will be stable.

2.3 Dynamic Phasor Based Impedance Modeling and Analysis

Power electronics converters which are highly employed in todays microgrid can cause harmonic

interaction and resonance in the system [19, 20]. Hence it is essential to analyze the system

stability with harmonics. Combining both dynamic phasor approach and impedance model provides

substantial advantage for stability analysis in power system since it can be utilized not only to

analyze unbalance systems but also to analyze harmonic components.
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CHAPTER 3

INITIALIZATION OF SYSTEMS WITH RENEWABLE INTEGRATION

3.1 Introduction

This Chapter presents the research on initialization of a power system with renewable inte-

gration. The first section 1 presents an accurate dynamic model for a DFIG and steady state

calculations considering losses inside the wind farm. Initial state calculations for an unbalance

system with renewable penetration is presented in next section 2. Here the unbalance of the system

is caused by a single phase PV integration.

3.2 Analytical Modeling and Initializing of DFIG

Wind power can be considered as one of the most promising and fastest growing renewable

energy sources due to its low generation cost and the minimum environmental impact. With the

rapid increasing penetration to the system, it is essential to study the impact of wind generation

on the power system. Wind forecasting plays a major role in implementing an accurate model to

estimate the power generation of a wind farm. Several methods of wind forecasting are presented in

[21, 22, 23]. At the same time building an accurate wind farm model is equally important to find the

correct power dispatch and initial conditions. Doubly Fed Induction Generator (DFIG) is widely

used in wind generation today. A detailed dynamic model of a DFIG is presented in [24]. However,

it is logical to consider steady state model of a DFIG for power dispatch. A better approach to

calculate steady state operating conditions for DFIG is discussed in [25]. It has considered the

power losses due to stator and rotor resistance. Most of the work, including [26, 27, 28] consider

1This section is based on the work published in North American Power Symposium (NAPS), pp. 1-6. IEEE, 2011.
Permission is included in Appendix A.

2This section is based on the work published in Power & Energy Society General Meeting, 2015 IEEE. Permission
is included in Appendix A.
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Figure 3.1. Wind turbine and DFIG.

the electrical power output of a DFIG is known for a given wind speed. This can be achieved either

by assuming that there is no power loss within the wind farm or by referring to the power curve of

the machine provided by the manufacture. If the power loss inside the wind farm is neglected, then

the power output of the DFIG is equal to the mechanical power which can be calculated directly

using the wind speed. Another method is to obtain the expected power output from the power

curve of the machine under the assumption that the power given by the manufacture matches with

the actual electrical power output of the machine. But in practice actual electric power will depend

on the reactive power injection and the power system parameters. To overcome the above problem

a method without those assumptions should be implemented. Then this model can be employed to

obtain optimal power flow with wind power penetration.

3.2.1 Steady State Model of a Wind Farm

Steady State model of the wind farm consists of the wind turbine model and the DFIG model.

Detailed models are employed in the following subsections. The power losses inside the wind farm

are modeled separately.
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3.2.1.1 Wind Turbine Model

The system presented in Fig.3.1 consists of a wind turbine with a DFIG. The mechanical power

output of the wind turbine can be written as,

Pm =
1

2
ρACpU

3 (3.1)

where ρ,A,Cp, U are air density, area covered by the turbine rotor, power coefficient and wind

speed.

Power coefficient Cp, depends on the tip speed ratio λand the pitch angle β [24].

λ =
Vt
U

(3.2)

where Vt is the tip speed. A wind turbine can be operated in three modes [25].

• Minimum rotor speed

• Maximum power production (Cp,max)

• Maximum rotor speed

The maximum power production mode operation is assumed in this work. This implies that the

wind speed is below the rated speed and the pitch angle of the turbine is zero. Since Cp depends on

λ and β, Cp,max can be achieved at one specific λ value, which is the optimal value of λ. Therefore

(3.2) can be written as,

Pm = k0U
3 (3.3)

where K0 = 1
2ρACp,max

3.2.1.2 DFIG Model

Equivalent circuit diagram of the DFIG is shown in Fig. 3.2. Since the core loss in a DFIG

(Induction Generator) is very low compared to the rotor and the stator copper losses it is neglected
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Figure 3.2. Equivalent circuit diagram of DFIG.

from the steady state model. By applying the Kirchhoffs Voltage law to the circuit,

Vs∠θs = −(Rs + j(Xs +Xm))Is∠φs + jXmIr∠φr (3.4)

Vr∠θr = (Rs + j(Xs +Xm))Ir∠φr − jXmIs∠φs (3.5)

Stator and rotor powers can be calculated as,

Ps = VsIscos(θs − φs) (3.6)

Pr = −VrIrcos(θr − φr) (3.7)

For the simplicity of steady state calculations, it is assumed that the reactive power is transferred

through the stator only. This is achievable since reactive power through the rotor can be controlled

in the grid side converter. Consequently the total reactive power of the DFIG can be expressed as,

Q = VsIssin(θs − φs) (3.8)

3.2.1.3 Power Losses Inside the Wind Farm

Power losses inside the wind farm can be categorized as follows.

• Generator power losses

• Gear box power losses

12
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• Converter power losses

Total power loss is given by

PLoss = PGen,Loss + PGB,Loss + PConv,Loss (3.9)

3.2.2 Steady State Operating Conditions

The above expressions can be summarized as,

f1 = Vscos(θs) +RsIscos(φs)− (Xs +Xm)Issin(φs) +XmIrsin(φr) = 0 (3.10)

f2 = Vssin(θs)−RsIssin(φs) + (Xs +Xm)Iscos(φs)−XmIrcos(φr) = 0 (3.11)

f3 = Vrcos(θr)− sXmIssin(φs)−RrIrcos(φr) + s(Xs +Xm)Irsin(φr) = 0 (3.12)

f4 = Vrsin(θr) + sXmIscos(φs)−RrIrsin(φr)− s(Xs +Xm)Ircos(φr) = 0 (3.13)

f5 = P − VsIscos(θs − φs) + VrIrcos(θr − φr) = 0 (3.14)

f6 = Q− VsIssin(θs − φs) = 0 (3.15)

f7 = P + I2sRs + I2rRr + PGB,Loss − k(1− s)3 = 0 (3.16)

If the generator power outputs, P,Q are known for a given wind speed, then the steady state op-

erating conditions can be achieved solving the above equations employing Newton-Raphson method.

An iterative method is proposed to combine optimal power flow to obtain accurate power outputs

of the wind farm. The proposed algorithm is presented in Fig.3.3 and can be described as follows:

1. Set the initial values for P and Q. For a given wind speed the mechanical power can be

calculated and it can be set as the initial value of P because closer the initial value (set value)

to the true value (actual power) is faster the algorithm converges.

2. Since the initial P and Q values are set, the DFIG can be considered as a PQ bus in the optimal

power flow simulation. It is assumed that DFIG is dispatching the maximum possible power

13
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Figure 3.3. Iterative model for optimal power flow and steady state calculations.
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to the system (this is reasonable because there is no fuel cost involves with wind generation).

Voltage magnitude an angle of each bus in the system will be calculated during the optimal

power flow. Hence the magnitude and the angle of stator voltage of the DFIG can be obtained.

3. Since P,Q, Vs and θs are known NR method can be used to find steady state conditions of

DFIG.

4. Wind speed which is related to set P and Q can be calculated using the steady state variable,

slip.

5. Error between the calculated wind speed and the actual wind speed can be found.

6. P can be adjusted according to the calculated error.

7. Steps 2-6 will be repeated until the error becomes less than the given tolerance. More accurate

results can be obtained by reducing the tolerance. However it will take more time (number

of iterations) to converge.

8. Final steady state operating conditions and the economic dispatch pattern can be used as the

final result.

3.3 Sweeping Method Implementation for Unbalanced Network

Power system dynamic studies will be more complicated when the unbalance sources exist.

Single phase PV is such kind of source which will introduce unbalance components to the distributed

power system. In order to carry out more accurate simulations, the initial state calculations and

load flow studies needed to be conducted more carefully [29]. This section presents a methodology

to initialize a dynamic phasor based distribution system consist of single-phase PV and three-phase

induction machine and loads. In order to carry out small signal analysis of a system, the system

states should have a constant steady state value. Dynamic phasor models are capable of providing

constant steady state values under unbalanced conditions[30, 31]. Hence the dynamic phasor model

of the system presented in Fig. 3.4 is utilized to achieve the above objective. A proper initialization
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Figure 3.4. The system under study.

method has to be employed to obtain accurate initial values for this model. Following challenges

needed to be addressed in this initialization method.

• Should be capable of providing an efficient computing method for unbalanced radial distri-

bution network.

• Unbalance conditions needed be considered in the induction machine model.

Both these challengers are tackled in the work presented in this subsection. A sweeping tech-

nique [32] is utilized to address the first challenge while dynamic phasor based induction machine

model is utilized to tackle the second challenge.

3.3.1 The Study System

The power system which is used in this study is an unbalanced radial distribution system,

including an induction machine, Power Factor Correction (PFC) capacitors, a load and a single-

phase PV. Fig. 3.4 shows the single-phase circuit diagram. All the elements are connected to the

point of common coupling (PCC). Parameters of the system are given in the appendix. The single-

phase PV is composed of an LCL filter for filtering out the unwanted harmonics. In the single line

diagram shown in Fig. 3.4, all the lines except for the PV are three phase balanced, and the PV

line is a single phase line.
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Figure 3.5. The connection of PV and an LCL filter to the grid.

Most distribution systems are radial which enables the calculation of load flow starting from

one point and moving forward/backward to the other points of the system. Usually, distribution

network matrices are ill-conditioned with sparse bus admittance matrix. This can be justified by

excessive number of nodes in systems compared with a number of branches. Newton-Raphson or

fast decoupled methods need to store the network admittance matrix and require computing power.

On the other hand, sweeping method does not need to store the admittance matrix. In addition,

fast decoupling methods can not apply when the ratio of Rline
Xline

is high. For a system in Fig. 3.4,

sweeping method is more suitable.

3.3.2 Sweeping Method Procedure

The sweeping method starts from the initial guess of the PCC voltage. From the PCC voltage,

and Newton-Raphson method, stator currents of the induction machine can be found. The line

impedance ZL1 can be incorporated into the IM’s stator impedance. Detailed description of the

Newton-Raphson method for IM in unbalanced conditions is given in the next section. At the

same time, with the first guess of PCC voltage, the PFC current and the load current will be

calculated. The PV current will be also calculated based on reference PV power and initial PCC

voltage using the Newton-Raphson method. Fig. 3.5 gives the topology of the PV system where an

LCL filter connected PV’s converter to the grid. The PV panel and the interfacing converter have

been aggregated as a block in Fig. 3.5 where the output is a sinusoidal AC voltage. Therefore, the

PV and its converter are modeled as a voltage source, VPb.
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The following equations (in phasor domain) can be derived for the PV model presented in Fig.

3.5, 

VPCC = IPa(ZPV + jωLa) + VPC

VPC = VPb − jωLbIPb

IPa = IPb − jωCVPC

Pref PV = <(VPbI
∗
Pb)

(3.17)

The reference PV power will be further expressed by VPCC and IPa. Since VPCC is known, IPa can

be found from the nonlinear equation using Newton-Raphson method.

Total current to the grid is then calculated by summing the PV current, PFC current, load

current and IM currents. It should be noted that, as the PV is single-phase, currents for phase a

is different from those of the two other phases. This will create an unbalance in the PCC voltage

and the grid current. The grid currents can be expressed as:

IGa =IPa − IIMa − IPFCa − ILa

IGb =− IIMb − IPFCb − ILb

IGc =− IIMc − IPFCc − ILc

(3.18)

Assume that the grid voltage is fixed as VGa, VGb, VGc, the PCC voltage will be updated using

the calculated grid currents:

VPCC(new) = VGabc + IGabcZL (3.19)

This new PCC voltage will be used to compute currents again until convergence. The flowchart of

the sweeping algorithm is shown in Fig. 3.6.
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Figure 3.6. Flowchart of the sweeping method.
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 Figure 3.7. Conversion from abc to pnz and back to abc for an induction machine.

3.3.3 Induction Machine Model and Initialization

In this section, the initialization of an induction machine will be presented. The given informa-

tion is the load torque (TL) and the PCC voltage. The PCC voltage is treated as the stator voltage

of the IM when the line impedance ZL1 is aggregated into the stator impedance.

To capture the dynamic behavior of an induction machine under unbalance condition, the

dynamic model should include both positive, negative and zero (pnz)sequence components. The

pnz dynamic phasor-based dynamic model for unbalanced IM has been developed in [30]. This

model will be used in this work. All other elements, e.g., PV, PFC and the line, are all modeled

by dynamic phasors in abc phase frame. Therefore, the pnz dynamic phasor-based IM model will

be converted to abc dynamic phasor-based model as shown in Fig. 5.5.
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In the pnz reference frame, IM model’s state variables include the stator and rotor currents:

IPs, INs, IZs, IPr, INr, IZr, respectively. Subscripts P,N,Z define the positive, negative, and zero,

respectively where as subscripts s and r defines the stator and rotor signal respectively. Moreover,

each signal has a real and imaginary part which will be shown by superscripts r for real and x for

imaginary part of the signal. Neglecting the zero sequence components, eight current components

(IrPs I
r
Ns I

r
Pr I

r
Nr I

x
Ps I

x
Ns I

x
Pr I

x
Nr) and three rotor speed components (ωr0, ω

r
r2 and ωxr2) should be

initialized. The inputs of the IM are three-phase voltages of the stator in abc frame. The rotor

voltages are considered to be zero. The stator voltages in abc should be converted to the pnz. The

basic dynamic model of IM now is extended to pnz reference frame and can be expressed by:

V = CI +D
d

dt
I (3.20)

where, V = [VPs V
∗
Ns 0 VPr V

∗
Nr 0]T , and I = [IPs I

∗
Ns 0 IPr I

∗
Nr 0]T . Matrices C and D then can

be formulated as (3.21). Then state-space model can be found:

C =



rs + jωsLs 0 jωsLm 0

0 rs − jωsLs 0 −jωsLm

jωsLm − jωr0 P2 Lm −jωr2 P2 Lm rr + jωsLr − jωr0 P2 Lr −jωr2 P2 Lr

−jω∗r2 P2 Lm −jωsLm − jωr0 P2 Lm −jω∗r2 P2 Lr rr − jωsLr − jωr0 P2 Lr



D =



Ls 0 Lm 0

0 Ls 0 Lm

Lm 0 Lr 0

0 Lm 0 Lr


(3.21)


İ = Fx

Fx = D−1CI +D−1V

(3.22)
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where Fx is the vector of the derivative of induction machine currents, including real and imaginary

parts. Separating real and imaginary parts of Fx, eight equations of real and imaginary derivatives

of IM currents will be achieved. Three equations of rotor speed in fundamental harmonic and

second harmonic, presented in (5.9), can be added to shape the entire model in state space:

˙ωr0 =
1

J
(PLm=(IPsI

∗
Pr + I∗NsINr)− TL −Bωr0)

˙ωrr2 =
1

J
<(PLm

1

2j
(IPsINr − INsIPr)− (B + j2Jωs)ωr2)

˙ωxr2 =
1

J
=(PLm

1

2j
(IPsINr − INsIPr)− (B + j2Jωs)ωr2) (3.23)

where, P is the number poles, J is the inertia constant, B is the damping factor, < is the real part

and = is the imaginary part. Now, combining (5.9) and (5.8), an entire dynamic model of IM is

obtained Ẋ = f(X),

where X = [IrPs I
r
Ns I

r
Pr I

r
Nr I

x
Ps I

x
Ns I

x
Pr I

x
Nr ωr0 ω

r
r2 ω

x
r2]

T , and f(X) is the derivative of X.

The initialization will find the solution for f(X) = 0. Newton-Raphson method starts with

calculating the jacobian of f(x). In the first step, initial guesses for the induction machine will be

applied. Here, the initial guesses for all the parameters are set to zero except ωr0 = 188, IrPs = 1,

and IrPr = 1. The Newton’s approach conducts the following iteration:

Xk = Xk−1 −
(
∂f

∂X

)−1∣∣∣∣∣
Xk−1

f(Xk−1) (3.24)

where Xk−1 is the initial value in the last step. This iteration process will be continued till the

error value is less than 0.001. After the error is converged, the initial parameters of the induction

machine are obtained which will be used in sweeping method that was described in the previous

section.

3.3.4 Case Study

The model has been built in Matlab. The sweeping method along with two embedded Newton’s

approaches to find IM and PV initials have been applied. The IM model is built in pnz reference
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frame, then it has been converted to abc frame, the grid is then modeled in abc and the single-phase

PV is then added to the system in phase a. Two case studies have been conducted to examine the

convergence of the algorithm for a balanced system (without PV) and an unbalanced system (with

2 kW PV). Moreover, dynamic simulations have also been carried out to demonstrate the system

performance after a sudden torque change in the unbalanced system.

3.3.4.1 Case 1: Balanced System

In this case, the PV has been removed from the model and three-phase balanced voltages have

been applied to the system. Convergence of the algorithm for the balanced case has been illustrated

in Fig. 3.8 to Fig. 3.10. As it can be seen, the sweeping method for the entire system converges

after five iterations which verifies the robustness of the algorithm in balanced condition.
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Figure 3.10. Rotor speeds in balanced case.

The results of the line and IM RMS currents for the balanced case have been illustrated in

Fig. 3.9. As expected, magnitudes for all three phases are the same for the balanced case. Results

for rotor speed is illustrated in Fig. 3.10 which verifies the rotor speed does not have any second

harmonic component due to balanced operation.

3.3.4.2 Case 2: Unbalanced System

In this case, the system is faced with unbalance due to the connection of a single-phase PV at

phase a. The power rating of the PV has been set to 2 kW. The iterative results for the unbalanced

system has been illustrated in Fig. 3.11 to Fig. 3.13. As it can be seen, the sweeping method in

this case takes seven iterations to converge.

Fig. 3.12 shows that line current at phase a is less than the other two phases which is caused

by operation of a single-phase PV at phase a. Furthermore, Fig. 3.13 shows the rotor speed and its

second harmonic components for unbalanced case. As it can be observed, by connecting the single

phase PV, the second harmonic components of the PV will have a value and the sweeping method

can obtain the initial values for these components as well.
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Figure 3.11. Simulation results of sweeping method for voltages in unbalanced case.

1 2 3 4 5 6 7
9

9.5

10

10.5

Number of Iteration

IM
 a

nd
 P

V
 R

M
S 

C
ur

re
nt

s 
(A

)

 

 
I
Ma

I
Mb

I
Mc

I
PV

1 2 3 4 5 6 7

16

18

20

22

Number of Iterations

L
in

e 
R

M
S 

C
ur

re
nt

s 
(A

)

 

 

I
a

I
b

I
c

Figure 3.12. Simulation results of sweeping method for currents in unbalanced case.
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Figure 3.13. Simulation results of sweeping method for rotor speed in unbalanced case.
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Table 3.1. Parameters of the induction generator

Total capacity 5.5 kVA
Nominal voltage 400V

Frequency 60Hz
Rs 2.52 Ω
Rr 2.67 Ω
Xls 3.39 Ω
Xlr 3.39 Ω
XM 197 Ω
J 0.486kg.m2

P (poles) 4

Table 3.2. Data of the lines in network

Line No Line Type Z (Ω/km) Length(m)

1 Grid Line (3-phase) 0.284+j0.0825 105
2 IM Line (3-phase) 0.497+j0.0861 105
3 PV Line (single-phase) 0.0144+j0.0064 30
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CHAPTER 4

DYNAMIC PHASOR BASED SSR ANALYSIS OF DFIGS

4.1 Introduction

The Utility industry has been concerned with SSR issues in Type 3 wind generator with series

compensated network [33]. There have been published a series of papers on this topic employing

eigenvalue based analysis [34, 35, 36] and frequency domain impedance based analysis [37, 38, 39].

Compared to eigenvalue based analysis where an entire system’s dynamic state matrix, eigenvalues

and participation factors will be examined, impedance modeling approach is a frequency domain

approach. Impedance modeling also provides a modular approach. We can develop an impedance

model for a doubly fed induction generator (DFIG) and an impedance model for a transmission

line. To examine the impact of line parameters on SSR, we only need to concern the line impedance

model. Therefore, impedance modeling approach can provide more insights into impact factors of

resonance stability.

This chapter 1 will examine the effect of TCSC on SSR. It has been claimed in the literature

that TCSC is neutral to SSR [40]. In addition, Varma et al have published experimental results

to demonstrate that TCSC can successfully suppress SSR in Type 1 wind generator systems [41].

The purpose of this chapter is to provide a theoretic base to explain why TCSC has such capability

and the approach we adopt is frequency domain impedance modeling approach.

To the best of the author’s knowledge, TCSC is one of the power system components that is

most difficult to model due to its low-order harmonic components in inductor currents and capacitor

voltages. In the literature, other than dynamic phasor based models, TCSC’s small signal model

can be developed by two approaches. In the first approach [42], frequency responses in Bode

1This chapter was published in Sustainable Energy, IEEE Transactions on 6, no. 1 (2015): 179-187. Permission
is included in Appendix A.
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plots are obtained from small perturbation of time-domain simulation models. From these Bode

plots, transfer functions are tuned to match the Bode plots. Such method is also called frequency

scanning and has been employed to develop HVDC models [43] and in SSR studies [44]. In the

second approach, TCSC’s steady-state model is derived [45] based on Fourier analysis and can be

expressed in terms of the firing angle. This model can be used to develop an approximate impedance

model. Both approaches cannot provide an accurate frequency domain impedance model.

Dynamic phasor based modeling technique can include harmonic and unbalance effects in an-

alytical models and has been employed in the past for time-domain simulation and small signal

analysis [46]. The work presented here provides one step further. The contribution of this work

is to employ dynamic phasor technique in deriving accurate impedance models for TCSC with

constant firing angle control and constant impedance control. With the derived impedance mod-

els, Nyquist-stability-criterion can be applied to detect SSR stability in systems with TCSC. This

chapter successfully demonstrates TCSC’s capability in avoiding SSR in Type 3 wind generator

interconnection systems. In addition, sensitivity of TCSC’s impedance control parameters on SSR

stability is also investigated. The analytical results obtained through impedance models are vali-

dated by detail based time-domain simulation in Matlab/SimPowerSystems.

4.2 Impedance Model of TCSC

With the assumption of a sinusoidal imposed voltage, the fundamental frequency current

through a Thyristor Controlled Reactor (TCR) can be obtained and further the inductance can be

expressed as [47]:

L(α) = L
π

π − 2α− sin 2α
(4.1)

where α is the firing angle measured from the zero crossing of the line current.

Therefore, a simple TCSC impedance model per-phase can be expressed as:

ZTCSC(s) =
sL(α)

1 + s2L(α)C
(4.2)
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The assumption of undistorted voltage is not the case in TCSC. Undistorted line current as-

sumption is usually used for TCSC. Jalali et al [45] derived a complex steady-state reactance model

for a TCSC. To account for dynamics and develop frequency domain impedance model, we start

from the state-space model of fundamental frequency component developed in [46]. The circuit

L

C

il
vc

i

TCR

Figure 4.1. TCSC circuit diagram.

2.5 2.505 2.51 2.515 2.52
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

V
al

ue
 (p

.u
)

α

σ

φ

τ

iTCSC

VciL

Figure 4.2. TCSC waveforms.

diagram of a TCSC is presented in Fig .4.1. This circuit consist of a capacitor in parallel with

Thyristor Controlled Reactor (TCR). The net impedance of the TCSC can be controlled via con-

trolling the fire angle α of the TCR. Fig. 4.2 shows the steady state voltage and current waveforms

of the TCSC. The Thyristor is switched on α angle after the zero crossing of the line current and

will be conducting till τ . Conduction angle is defined as, σ = τ − α and it can be assumed that

the angle σ is symmetrical with respect to the peak value of the line current to simplify model de-

velopment. This assumption is employed in [46]. The dynamic phasor model for the fundamental

voltage and current phasors can be developed as follows.
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

˙V R1

V̇ I1

˙IR1

İI1


︸ ︷︷ ︸
Ẋ
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
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πLsin(σ) sin(2(ξ + φ)) 0 −ωs
1
πL sin(σ) sin(2(ξ + φ)) 1
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1
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C
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V R1
V I1


︸ ︷︷ ︸

Y

=

1 0 0 0

0 1 0 0


︸ ︷︷ ︸
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
V R1

V I1

IR1

II1


︸ ︷︷ ︸
X

(4.4)

The dynamics of the TCSC are as follows:


C dvc

dt = il − i

Ldi
dt = qvc

(4.5)

where il is the line current vc is the voltage across the capacitor, i is the current through the

TCR and q is the switching function which represents the TCR switching. q = 1 when one of the

thyristors is conducting and q = 0 when both are not conducting. Fundamental dynamic phasor

representation of (4.5) can be obtained using the dynamic phasor concept [46].


C dV1

dt = Il1 − I1 − jωsCV1

LdI1dt =< qvc >1 −jωsLI1
(4.6)

where subscript ”’1”’ denotes phasors related to the fundamental frequency. These phasors are

complex variables and can be expressed by the real part and the imaginary part.
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
V1 = V R

1 − jV I
1

I1 = IR1 − jII1

Il1 = IRl1 − jIIl1

(4.7)

When a TCSC is operating in capacitive region, the fundamental component gives a good approxi-

mation for the capacitor voltage, vc [46]. Hence vc can be represented by only fundamental dynamic

phasor coefficients,

vc = V1e
jωst + V ∗1 e

−jωst (4.8)

Assuming the fundamental component of the inductor current is symmetric with respect to the

peak of actual inductor current [46], then

< qvc >1=
2

π

∫ τ

α
vce
−jθdθ =

1

π

[
V1σ + V ∗1 sin(σ)e−2j(ξ+φ)

]
(4.9)

where the definitions of ξ and φ can refer [46] and are also shown in Fig. 4.2.

The fourth-order state-space model of the TCSC is be presented in (4.3) and (4.4).

4.2.1 Impedance Model with Fixed α

With fixed α control, the system matrix A is a constant matrix, hence the state space model

given in (4.3) and (4.4) can be utilized to obtain the impedance matrix directly as follows:

ZTCSC(s) =
Y (s)

U(s)
= C(SI −A)−1B. (4.10)
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4.2.2 Impedance Model with α Control

Fig. 4.3 shows the impedance control loop of the TCSC.

s

K
K i

p 

 

Figure 4.3. Control block diagram for α control in TCSC.

The Laplace expression of the firing angle is as follows:

∆α(s) = −H(s)∆Z(s)). (4.11)

Impedance Z is computed from the instantaneous voltage and current measurements as shown in

Fig. 4.3. The expression of Z is as follows:

Z =

∣∣∣∣V1Il1
∣∣∣∣ =

√
(V R

1 )2 + (V I
1 )2

(IRl1)2 + (IIl1)
2

(4.12)

where I0l and V 0
1 are the fundamental components of initial line current and capacitor voltage.

Applying small perturbation and the resulting impedance deviation ∆Z can be expressed as:

∆Z =

[
∂Z

∂X

]T
∆X +

[
∂Z

∂U

]T
∆U (4.13)

When α is controlled, the system matrix A is no longer a constant matrix. The resulting small

signal state space model is given as:

∆Ẋ = A(α0)X +
∂A

∂α
X0∆α+BU (4.14)
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Applying Laplace transformation leads to

sX(s) = A(α0)X(s) +
∂A

∂α
X0∆α+BU(s) (4.15)

Substituting (4.11) and (4.13) into (4.15) leads to

X(s)

U(s)
=(

sI −A+
∂A

∂α
X0H(s)

∂Z

∂X

)−1(
−∂A
∂α

X0H(s)
∂Z

∂U
+B

)
︸ ︷︷ ︸

GUX(s)

(4.16)

Hence the impedance model is expressed as:

ZTCSC(s) =
Y (s)

U(s)
= CGUX(s) (4.17)

4.3 Frequency Domain Analysis

4.3.1 Stability Criterion

For single-input single-output (SISO) systems, Nyquist plots and Bode plots of the loop gain

Y (s)Z(s) can be used to detect stability issues and determine phase margin and gain margins.

However, the derived impedance models in this chapter are two by two matrices for each impedance.

In turn, the equivalent control systems are multi-input multi-output (MIMO) systems. To examine

stability for MIMO system, [48] proposes to plot the Nyquist maps of the eigenvalues of the loop

gain. Such technique is employed in [49].

Singular values of the return matrix T (s) = I + Yl(s)Zs(s) delivers a good measure of stability

of a system [50]. The difference between maximum and minimum singular value can be used as a

indicator of the system “ill conditioning” [50]. The larger the difference, the more the system is

prone to “ill condition”. In addition, if the minimum singular value of the return reference matrix is

equal to or more than one, the system is guaranteed to have a phase margin of ±60 which means the
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system is stable. The corresponding frequency at the minimum singular value indicates resonance

frequency. This criteria can be employed to identify the ill conditioning frequencies of the system.

4.3.2 Case Study

 

Figure 4.4. The study system: 100 MW Wind farm connected to infinity bus through two parallel
transmission lines.

In this subsection, the developed TCSC impedance model is used for stability analysis. A case

study considered is a Type 3 wind farm interconnected with a series compensated network. The

system is modified Second Benchmark model which has been widely used for SSR studies [51]. It

is composed of two parallel transmission lines, one of them is series compensated. To entice the

SSR mode, three-phase breakers have been used in uncompensated line to trip the line at specific

moment. The system diagram is shown in Fig. 4.4.

The wind farm is represented with a lumped DFIG model which is connected to the system

through a transformer. This model is considered as the study system for the proposed work here.

SSR study is carried out for two series compensation methods: fixed capacitor and a TCSC. Series

capacitor circuit can be modeled easily with space vector representation hence impedance model

can be achieved directly [38]. As one case study is defined based on different control parameters of

the Rotor Side Converter (RSC) controller, the inner current control loop of the RSC is illustrated

in Fig. 4.5. Two PI controllers have been used to regulate the currents to yield a proper voltage

output. The gain settings of two PI controllers are the same for d− axis and q − axis. For fixed

capacitor and TCSC scenarios, the compensation degree at 60 Hz will be the same. The parameters

of the transmission line, capacitor size and TCSC parameters are listed in Table 4.1.
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Figure 4.5. Inner current control loop for rotor side converter of DFIG.

Table 4.1. Parameters of the transmission lines

Transformer Ratio 575V/161kV
Transformer Xt 0.1 pu

Power base 100 MVA
Frequency 60Hz

R1 0.02 pu
R2 0.02 pu
Xl1 0.5 pu
Xl2 0.02 pu

Xc at 50 % compensation 64.8 Ω
LTCSC 3.8 mH
CTCSC 65e-6 F

α at 50% compensation level 720
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4.3.2.1 Fixed Series Compensation

Phase domain based scalar impedance models for an DFIG has been developed in [38]. For a

transmission line with fixed series compensation, the scalar impedance model is R+ sL+ 1
sC .

Fig. 4.6 and 4.7 present the Nyquist plot for the loop gain YDFIG(s)Znet(s) and the Bode plots

for ZDIFG(s) and Znet(s), where Znet(s) is the impedance of the series compensated line, ZDIFG(s)

is the DFIG impedance, and YDFIG = 1/ZDFIG. The two figures show the resonance frequencies at

different compensation level. It can be seen from the bode plot that the higher the compensation

degree, higher the network resonance frequency fn. Resonant frequencies for 40 %, 50 %, and 70 %

are 29 Hz, 32 Hz and 38 Hz, respectively. It is shown that phase margin reduced with increasing the

compensation level and nyquist plot for all compensation levels encircles[-1,0] in clockwise direction

implying the system goes unstable for all compensation levels. Simpower simulation presented in

section IV validates this. Note that the network resonant at fn will be observed as an oscillation

made with a complementary frequency which is fs − fn, where fs is 60 Hz.

Considering only the fundamental frequency component, the dynamic phasor based impedance

models for the transmission line and the fixed capacitor are presented as follows.

Zline =

 R+ sL ωsL

−ωsL R+ sL

 (4.18)

ZFC =

 s
s2C+ω2

sC
− ωs
s2C+ω2

sC

ωs
s2C+ω2

sC
s

s2C1+ω2
sC

 (4.19)

Znet = Zline + ZFC (4.20)

Fig. 4.8 (a) presents the singular value of the return different matrix 1 + YDFIGZnet. It is

found that ill conditioning frequencies correspond to the frequencies of the SSR modes. As for all

the compensation levels the minimum singular value is less than one at SSR frequencies, implying

unstability in the system for all the cases.

For example, at 40% compensation level, the singular value plot shows that at 31 Hz, the mini-

mum singular value reaches the lowest point. This corresponds to the 29 Hz resonance frequency in
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Figure 4.6. Nyquist plots for different compensation levels, RSC: Kp = 0.6, Ki = 8.
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Figure 4.8. Singular value plots of 1 + YDFIGZnet for each compensation level of different modes;
(a) fixed capacitor, (b) constant alpha mode for TCSC, (c) impedance control of TCSC, RSC:
KP = 0.6, Ki = 8, TCSC gains: KP = 0.53, Ki = 3.

the phase domain in Fig. 4.7 because they are complementary to each other. At 50% compensation

level, the singular value plot shows that at 28 Hz, the minimum singular value reaches the lowest

point. This corresponds to the 32 Hz resonance frequency in the phase domain in Fig. 4.7. At

70% compensation level, the singular value plot shows that at 22 Hz, the minimum singular value

reaches the lowest point. This corresponds to the 38 Hz resonance frequency in the phase domain

in Fig. 4.7.

4.3.2.2 TCSC Effect

• Effect of Fixed α Mode:

Fig. 4.8 (b) shows the effect of different compensation levels of TCSC in constant alpha mode

on system stability. Different values for Alpha are given in Table 4.2. It can be concluded that

TCSC in constant alpha mode for all the compensation levels wont provide any instability problems

for the system cause the absolute value of singular values are greater than one for three cases.

Table 4.2. Different reference impedance of TCSC for different compensation levels

Compensation α Zref

40 % 750 52 Ω
50 % 71.90 65 Ω
70 % 69.350 91 Ω
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• Impedance control of TCSC:

Effect of different compensation levels of the TCSC when it is enhanced with Impedance con-

troller in capacitive mode is illustrated in Fig. 4.8 (c). The reference values of TCSC impedances

for different compensation level are presented in Table 4.2. It can be observed that as the compen-

sation level increases to 70 % the system faces with SSR and the frequency of the unstable mode is

22 Hz. However, impedance control mode of the TCSC is stable for 40 % and 50 % compensation

of TCSC.
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Figure 4.9. Singular value plot of 1 + YDFIGZnet for different compensation levels of TCSC at
steady-state, RSC: KP = 0.6, Ki = 8, TCSC gains: KP = 0.53, Ki = 3.

• Effect of TCSC Controller parameters:

Fig. 4.10 presents singular value plots of the return matrix 1 + YDFIGZnet for different gains of

TCSC controller in impedance control mode. The higher the gain of TCSC controller, the system is

more prone to ill conditioning. This implies that lower gains in TCSC impedance control increase

the stability margin of the system. From this figure it can be noted that the SSR mode is 28 Hz

when the TCSC Kp is set to 0.8 which is the highest one.

• Effect of RSC parameters:
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Figure 4.10. Singular value plot of 1+YDFIGZnet for different Kp, Ki of TCSC for 50% compensation
level at steady-state, RSC: KP = 0.6, Ki = 8.

In this case,the TCSC is in impedance control (capacitive mode) and the controller parameters

are fixed. The DFIG RSC parameters are changed to examine the effect of different RSC gains

on SSR. Fig. 4.11 presents the singular values of the return different matrix for different RSC

controller parameters. It is found that when TCSC is in constant impedance control mode, for the

selected RSC gains, the system is stable, but from the difference between lower and higher singular

values for each case, the lower the gain of RSC controller, the gap between lower and higher singular

value is more which clarifies the system is more prone to ill conditioning.

4.4 Time-Domain Simulation Results

In this section, analysis results will be verified by time-domain simulation results. Time-domain

simulation is carried out in Matlab/Simpowersystems where Thyristor switching details are in-

cluded. Two different scenarios will be studied.
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Figure 4.11. Singular value plot of 1+YDFIGZnet for different Kp,Ki of RSC for 50% compensation
level at steady-state, TCSC: KP = 0.32, Ki = 1.84.

4.4.1 Scenario One

In this case, the power system is composed of a wind farm integration of 70 wind turbines with

1.5 MW output power, as a whole transmitting the 100 MW power to the grid through two AC

transmission lines. A TCSC is inserted in series with one of the transmission lines aiming to inject

a series capacitance into the line and increase the power transfer capability of that AC line. A line

trip is considered for the uncompensated AC line at time 4 sec as a contingency studied. The main

aim of this scenario is to investigate the effect of different parameters of the system on SSR.

4.4.1.1 Effect of Different TCSC Gains

Fig. 4.12 shows the effect of different TCSC controller gains on SSR. It should be noted that

the gain settings of the RSC of the DFIG has been kept constant and also the compensation level

is set to 50% to verify the effect of different TCSC gains on SSR. It has been observed that as the

gain settings of TCSC controller are increased, the system is more likely to be unstable as for the

Kp = 0.8 the SSR happens at the frequency around 27 Hz. The simulation findings corroborate

with the analysis findings shown in Fig. 4.10.
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Figure 4.12. Simulation results for different Kp, Ki of TCSC for 50% compensation level at steady-
state, RSC gains: KP = 0.6, Ki = 8.
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Figure 4.13. Simulation results for comparison of reference impedance and TCSC measured
impedance for different Kp, Ki of TCSC for 50% compensation level at steady-state, RSC gains:
KP = 0.6, Ki = 8.
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Comparison of different TCSC gains on measured and reference impedance of DFIG is also

shown in Fig. 4.13 which verifies for the highest TCSC gains, the system is unstable which verifies

the analysis part.

4.4.1.2 Effect of Different TCSC Compensation Level
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Figure 4.14. Simulation results for different compensation of TCSC, RSC: KP = 0.6, Ki = 8, TCSC
gains: KP = 0.53, Ki = 3.

In this part, three different compensation levels have been considered for TCSC as 40%, 50%,

and 70% in impedance control mode of operation. The level of compensation can be mentioned as

the percentage of the line reactance to be compensated by the TCSC and it will be inserted as the

reference value of TCSC impedance. For example for 50 % the reference TCSC impedance is set

to 65 Ω. Results of simulation for this case has been illustrated in Fig. 4.14. The RSC gains of the

DFIG and the TCSC impedance controller gain have been kept constant in different compensation

levels. It can be observed that as the compensation level is increased to 70 %, the active power of

the line is faced with oscillations around 22 Hz, but for the 40 % and 50 % the system is stable.

These results match with the singular value analysis results in Fig. 4.9.

4.4.1.3 Effect of Different RSC Gains

in this situation, the compensation level of the TCSC is set to 50% and the TCSC controller

gains have been kept constant. All three cases are stable as previously discussed in Fig. 4.11. It

can be observed from Fig. 4.15 that, as the gain settings of RSC are increased, the system is more
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likely to be stable. This phenomenon is very different from the case where fixed capacitor is used.

In [52, 38], studies show that increasing RSC gains makes the system prone to SSR.
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Figure 4.15. Simulation results for different Kp, Ki of DFIG RSC for 50% compensation level at
steady-state, TCSC: KP = 0.32, Ki = 1.84.
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Figure 4.16. Simulation results for comparison of reference impedance and TCSC measured
impedance for different Kp, Ki of DFIG RSC for 50% compensation level at steady-state, TCSC:
KP = 0.53, Ki = 3.

Moreover, comparison of TCSC measured impedance and reference signal has been illustrated

in Fig. 4.16 which verifies the more RSC gains of DFIG, the system is more stable.
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4.4.2 Scenario Two

This case is dedicated to compare the results of TCSC compensated system with Fixed Capacitor

compensated power system. Same power system has been considered here but the TCSC is replaced

with fixed series capacitor. The contingency for this case is considered as a line trip which is applied

at time 3 sec. To study this case, firstly, the power system is enhanced with three different levels

of fixed capacitors. At the latter point, the Fixed Capacitor in the 70% compensation level will be

replaced by the 70% compensated TCSC in order to compare the results of fixed capacitor with

TCSC.

4.4.2.1 Effect of Different Fixed Capacitor Compensation Level

Results of simulation for different compensation level are illustrated in Fig. 4.17. It can be

observed that, as the compensation level is increased, the system is more prone to instability and

for the all the compensation levels, the system has lost his stability completely. The dominant

mode in this condition has the frequency of about 21 Hz for 70% compensation, 28 Hz for 50%

compensation and 32 Hz for 40% compensation. Referring to Fig. 4.8 the results of simulation are

in agreement with singular value analysis which has been performed in the previous section.
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Figure 4.17. Simulation results for different compensation level of fixed capacitor, XL = 0.5(p.u.),
RSC: KP = 0.6, Ki = 8.
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4.4.2.2 Comparison of TCSC and Fixed Capacitor

In this part, the compensation level is selected as 70% and the results of simulation for TCSC

and Fixed capacitor is shown in Fig. 4.18. It can be observed that, as the line trip happens,

the fixed capacitor compensated power system fails to sustain the stability and large fluctuations

will be experienced in the active and reactive power of the DFIG unit. In contrast, the TCSC in

impedance control mode can handle the SSR even in high level of compensation and the system

will retain the stability after a few cycles. It has to be mentioned that in this case, the gain settings

of the TCSC has been selected as lowest as possible to make the controller robust enough.
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Figure 4.18. Results of comparison between fixed capacitor and TCSC in 70% compensation of the
line reactance, RSC: KP = 0.6, Ki = 8, TCSC: KP = 0.16, Ki = 0.92.

The simulation results corroborate with the analysis results. In addition, important observations

with reference value are drawn as follows:

1. With a TCSC compensated transmission line, a DFIG based wind farm can be radially

connected with the line and operate. On the other hand, if fixed capacitor is used, Type 3

wind farms cannot be radially connected with series compensated lines due to SSR.

2. RSC current controllers no longer pose threat to SSR in TCSC compensated Type 3 wind

farm systems.
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4.5 Conclusion

This chapter develops impedance models of TCSC based on dynamic phasor concept. This

model is applied for SSR analysis and can shed insights into identifying impacting factors on

SSR. With the derived impedance models, Nyquist-stability-criterion can be applied to detect

SSR stability in systems with TCSC. This chapter successfully demonstrates TCSC’s capability in

avoiding SSR under capacitive mode scheme in Type 3 wind generator interconnection systems. In

addition, sensitivity of TCSC’s impedance control parameters on SSR stability is also investigated.

The analytical results obtained through impedance models are validated by detail based time-

domain simulation in Matlab/SimPowerSystems.
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CHAPTER 5

MODELING OF MICROGRIDS IN UNBALANCED CONDITIONS

This chapter 1 investigates the effect of unbalance modeling of microgrid based on dynamic

phasor approach.

5.1 Introduction

Increasing efficiency and decreasing cost of solar technology promotes substantial growth of

Photovoltaic (PV) power integration in modern power systems. The total capacity of grid connected

PV systems has increased from 300 MW in 2000 to 21 GW in 2010 [53]. PV has shared a fair amount

of renewable energy penetration in microgrids where the PV power supplies electrical loads for local

communities[54, 55, 56]. New government policies and incentives encourage more and more single-

phase PV systems to be connected. In addition, induction machine based loads are dominant in

distribution systems. Analytical models of such unbalanced distribution systems would provide

insights of the system and further be used for small-signal and large-signal stability analysis. The

analysis will help identify stability issues and mitigate related problems.

For unbalanced systems, abc frame-based dynamic models can be used for dynamic performance

examination. Simulation packages such as PSCAD [57] and Matlab/SimPowerSystems [58] are

based on simulation models with instantaneous variables, e.g. instantaneous voltages and currents

in three phases. Conventional linearization at an operating condition cannot be applied to linearize

these models due to the periodic varying state variables. The necessary condition for small-signal

analysis is to have constant values for state variables at steady state [59]. Transforming the models

to a synchronous rotating reference (dq) frame is the most common technique utilized to overcome

1This chapter was published in in Power Systems, IEEE Transactions on , vol.30, no.6, pp.3102-3109, Nov. 2015.
Permission is included in Appendix A.
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the above problem [59]. However the negative-sequence components presented in an unbalance

system will be converted to 120 Hz ac variables in a dq-reference frame. Hence, dq-reference frame

based models do not offer the capability of small-signal analysis under unbalanced topology and

operating conditions.

On the other hand, dynamic phasor-based modeling [30, 60, 61, 31, 62], an averaging technique,

has been demonstrated to be capable of converting periodic varying state variables into dc state

variables. It has been used in electrical machines analysis [30, 63, 64], HVDC and FACTS analysis

[61, 31, 62]. For example [62] presents an averaged model of LCC based HVDC system which is

capable of representing low frequency dynamic of the converters in both AC and DC sides. Dynamic

phasor models are ideal for small-signal analysis. Dynamic phasor modeling technique also provides

very accurate simulations for larger time steps [30, 62, 63]. Moreover, it can reflect the unbalance

modeling techniques as well [30, 60, 61, 31, 64]. For example, in [30] the Induction Machine (IM)

as well as Permanent Magnet Synchronous Generator (PMSG) model in unbalanced conditions

have been analyzed based on Positive, Negative, Zero (PNZ) reference frame analysis conducted

by Dynamic Phasor. Furthermore, in [61] the dynamic phasor modeling technique is used to model

the Unified Power Flow Controller (UPFC) as a FACTS device in unbalanced operating conditions

connected to single machine infinite bus power system.

In [65] dynamic phasor has been adopted in modeling for distribution systems, considering

fundamental frequency component only. The case study does not contain single-phase elements

or unbalanced topologies. The work in [66] presents a microgrid model containing a synchronous

generator model while considering both positive- and negative- sequence components. However the

inverter control is not modeled in detail.

The literature lacks a comprehensive unbalanced distribution system model (methodology) suit-

able for both small-signal analysis and nonlinear time-domain simulation at unbalanced conditions.

Hence work presented here investigates the effect of unbalance modeling of microgrid based on

dynamic phasor approach. A typical load, Induction Machine (IM), are modeled based on pnz

dynamic phasor approach in order to reflect the dynamics under the unbalanced conditions. The

major contribution of this work is the detailed modeling of single phase PV system with PR con-
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troller and LCL filter, and studying the impact on the system performance using dynamic phasor.

In addition, Power Factor Correction (PFC) and resistive load are added to the system to form a

real microgrid characteristics. Final model is achieved by converting the entire system to abc ref-

erence frame. Since the model is based on dynamic phasor approach, fast and accurate simulation

can be guaranteed. The nonlinear model is built in favor of transfer function-based or impedance

based models. Hence the model we built can be used for large-signal stability analysis. The model

can be linearized at an operating condition to carry out small-signal analysis as well.

5.2 Dynamic Phasor Approach

Dynamic Phasor (DP) models provides abundant merits, including: (i) the capability of small-

signal analysis and (ii) availability of large step size simulations. The main idea of DP comes from

describing the waveform x(τ) on interval [t− T, t] by Fourier Series:

x(τ) =
∞∑

k=−∞
Xk(t)e

jkωst (5.1)

where ωs = 2π/T and Xk is the k-th complex Fourier coefficient or Dynamic Phasor (DP). Due

to the fact that these coefficients are constant at steady state, the DP model can be linearized for

small-signal analysis. The k-th DP of the time varying signal x(τ) can be obtained by (5.2) [67]:

Xk(t) =
1

T

∫ t

t−T
x(τ)e−jkωsτdτ = 〈x〉k(t). (5.2)

where 〈.〉k denotes the kth harmonic DP.

The main characteristics of the DP modeling are as follow [67]:

〈
dx

dt

〉
k

= dXk
dt + jkωXk (5.3)

〈x.y〉k =
∞∑

l=−∞
(Xk−l.Yl) (5.4)
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(5.3) describes the relationship between the DP of a derivative versus the DP of the original

signal while (5.4) describes the relationship between the DP of a product versus the DPs of the

individual variables.

In this study, the main aim is to derive the DP model of a distribution system composed of a

single-phase PV, a three-phase induction machine, a PFC and distribution lines represented by RL

circuits. The DP models in the abc frame can be derived by converting the DP model from the

positive-, negative-, and zero-sequence (pnz) reference frame [30]. The original signals in the abc

frame can be expressed by pnz DPs as follows.


xa

xb

xc

 (τ) =
∞∑

l=−∞
ejkωsτ

1√
3


1 1 1

α∗ α 1

α α∗ 1


︸ ︷︷ ︸

M


Xp,l

Xn,l

Xz,l

 (5.5)

where l stands for the harmonic component index, M is the transformation matrix (MH = M−1)

from pnz to abc and p, n, and z stand for positive-, negative-, and zero-sequences. It is easy to see

that the DPs of abc variables have the following relationship with the DPs of pnz-sequences.


Xa,l

Xb,l

Xc,l

 = M


Xp,l

Xn,l

Xz,l

 (5.6)

In the next section, after introducing the entire system topology, the DP models of each element

will be presented one by one, which will be integrated into the system model.

5.3 System Configuration and Modeling

The parameters presented in [68, 66] are utilized for the proposed study system shown in Fig.

5.1. The distributed system consists of a single-phase PV station installed in phase a of the system,

a 3-phase induction machine, a 3-phase PFC and a 3-phase load.
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Figure 5.1. The study system.

5.3.1 DP Model of a Single-Phase PV

Traditionally, two-stage converters (a DC-AC converter after a DC-DC converter) have been

used for PV systems. Two-stage converters need additional devices compared with single-stage

converters. Therefore, single-stage converters have been implemented in PV grid integration [69,

70, 71, 72]. The basic configuration of a single-phase PV is illustrated in Fig 5.2. The main elements

of the single-stage PV are the Proportional Resonant (PR) current controller and the output filters.

bL aL

gVCap

 

Figure 5.2. Basic configuration of PV system.

Fig. 5.2 shows the basic configuration of the LCL filter in a single-phase PV. It is composed of

two inductances and one capacitor connected to the grid through a single phase transformer. The

simplified model of PV connected to the grid with L or LCL filter has been illustrated in Fig 5.3.

The output voltage of the DC-AC converter is vcon, the filter inductances for LCL filter are La

and Lb. And the grid side voltage is vG. The deducing process from Fig. 5.2 to Fig. 5.3 has been

conducted based on the supposition that the PV can be modeled as voltage source VCon in series

with an inductance LCon. Furthermore, the transformer can be modeled as an inductance XT .

Therefore, the relationship between La, Lb, L1 and L2 for the PV model with LCL filter can be
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considered as: L2 = Lb+LCon and L1 = La+LT . Furthermore, for PV connected to the L filter, if

Lf is used for the L filter inductance, the deduction process is summarized to L3 = Lf +LCon+LT .

2L 1L

1cVCV GV

)(a )(b

3L

1I 3I2I

CV GV

 

Figure 5.3. Simplified PV model with different combinations, (a) LCL filter, (b) L filter

Now, using the simple KVL and KCL laws, time domain equations of the system for the LCL

filter can be derived based on:

L1
di1
dt

= (vc1 − vG)

L2
di2
dt

= (vcon − vc1)

C1
dvc1
dt

= (i2 − i1) (5.7)

The dynamics of the PV system with the LCL filter in DP is expressed as follows (It should be

noted that only the first harmonic is considered for the derivation of dynamic phasor coefficients).

İ1 =
1

L1
(Vc1 − VG)− jωsI1

İ2 =
1

L2
(Vcon − Vc1)− jωsI2

V̇c1 =
1

C1
(I2 − I1)− jωsVc1 (5.8)

It should be noted that Vcon is the DP of the output voltage of the PV controller. For the L

filter the basic DP equation of the PV system connected to the grid can be derived as:

İ3 =
1

L3
(Vcon − VG)− jωsI3 (5.9)
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A detailed control block diagram of the single-stage single phase PV is illustrated in Fig 5.4. It

is composed of a Maximum Power Point Tracking (MPPT) unit, a Proportional Resonant (PR)

controller, a Phase-Locked-Loop (PLL), and a Pulse Width Modulation (PMW) pulse generation

unit. In this chapter, the effect of MPPT dynamics and PLL has been neglected for simplicity and

special attention has been dedicated to the PR controller and the LCL filter.
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2..VI
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dcdc
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GV PLL sinθ
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PR PWM
dcI

Controller

 

  Figure 5.4. Basic control of a single-phase PV.

5.3.1.1 DP Model of a PR Controller

PR control is used to track AC signals. The PR controller in Fig. 4 tries to provide unity

power factor power from the PV. Therefore, the current reference is synchronized with the grid

voltage through a phase locked loop (PLL). The dynamics of a PR controller considering only the

fundamental harmonics can be expressed as:

vcon = (Kp +
Krs

s2 + (ω0)2
)(i∗ − i1)

=

[
Kp +Kr(

0.5

s+ jω0
+

0.5

s− jω0
)

]
(i∗ − i1) (5.10)

where i∗ is the reference current comes from the PV array.

In the analytical model, the dynamics of PLL and MPPT are neglected for simplicity of the

analysis. i1 is the grid current when the PV is linked to the LCL filter. In a case where the PV

is connected to the L filter, i1 will be replaced by i3, which is the grid current. For the rest of

modeling, the LCL filter is considered only. By defining intermediate state variables x1 and x2,
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where

(s+ jω0)x1 = 0.5(i∗ − i1),

(s− jω0)x2 = 0.5(i∗ − i1). (5.11)

Converting these equations to DP model results in (5.12).

Ẋ1 = 0.5(I∗ − I1)− 2ω0X1

Ẋ2 = 0.5(I∗ − I1) (5.12)

The DP of the converter output voltage’s fundamental frequency component can be expressed

as:

Vcon = Kp1(I
∗ − I1) +Kr1(X1 +X2) (5.13)

The DP model of a single-phase PV consists of (5.8), (5.12) and (5.13). The current reference

I∗ comes from this equation: I∗ =
√
2VdcIdc

VG(rms) =
√
2Pref

VG(rms) .

5.3.2 DP Model of an Induction Machine

Since the single-phase PV will introduce unbalance in the distribution system, the induction

machine will be modeled to include the unbalance effect. Negative sequence component in the

stator voltage can cause a clockwise rotating stator flux. When this flux is interacting with the

clockwise rotating rotor flux, a 120 Hz torque ripple will appear. Therefore, the rotating speed will

have a 120 Hz ripple. To count in the negative effect, the dynamic model of three-phase induction

machine in [30] based on pnz-sequence components is adopted in this chapter. The space vector

model of a squirrel cage induction machine with magnetic saturation and slot harmonics neglected

is presented as follows.
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~vs = (rs + Ls
d

dt
)~is + Lm

d

dt
~ir

0 = Lm
d

dt
~is + (rr + Lr

d

dt
)~ir − jωr

P

2
(Lm~is + Lr~ir)

J
d

dt
ωr =

3P

4
Lm=(~is~i

∗
s)−Bωr − TL (5.14)

where ~vs, ~is, ~ir denote the stator voltage, stator current and rotor current respectively. TL is the

mechanical torque and ωr is the rotor speed. s and r denote the stator and rotor quantities,

respectively. = denotes the imaginary part. The DP model of an induction machine can be

derived by considering the positive- and negative-sequence components in stator/rotor voltages

and currents, as well as the dc and the 120 Hz components in the rotating speed [30].

Vps = (rs + jωsLs + Ls
d

dt
)Ips + (jωsLm + Lm

d

dt
)Ipr

0 = (jωsLm + Lm
d

dt
)Ips + (rr + jωsLr + Lr

d

dt
)Ipr

−jωr0
P

2
(LmIps + LrIpr)− jωr2

P

2
(LmI

∗
ns + LrI

∗
nr)

V ∗ns = (rs − jωsLs + Ls
d

dt
)I∗ns − (jωsLm − Lm

d

dt
)I∗nr

0 = (Lm
d

dt
− jωsLm)I∗ns + (rr − jωsLr + Lr

d

dt
)I∗nr

−jωr0
P

2
(LmI

∗
ns + LrI

∗
nr)− jω∗r2

P

2
(LmIps + LrIpr)

J
d

dt
ωr0 =

2P

4
Lm=(IpsI

∗
pr + I∗nsInr)−Bωr0 − TL

J
d

dt
ωr2 =

2P

j8
Lm=(IpsInr − InsIpr)

−(B + j2Jωs)ωr2 (5.15)

where subscripts p and n stand for positive and negative sequence components, respectively.
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Since the DP model for the PV system is based on phase a, to integrate the induction machine

model with the PV system model, the above pnz model will be converted to the abc frame using

the relationship presented in (5.6). The block diagram of the conversion has been illustrated in Fig

5.5.
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 Figure 5.5. Conversion from abc to pnz and back to abc for an induction machine.

5.3.3 PFC and the Integrated System

Considering that there is a three-phase PFC in parallel with the PV, the circuit model of the

microgrid can be illustrated as in Fig 5.6. where C denotes the capacitance of the PFC, IM is

LRC
pvaI

maI

LR

LRC
mpI

(a) (b)

LR

Ia

GaV GpV

Ip EpEa

 

Figure 5.6. (a) Model of microgrid with PV in phase a, (b) model of microgrid in phase b and c

the induction machine’s stator current, I is the line current, R and L are the distribution line’s

parameters, RL is the load model and E is the system voltage.

For phase a, the DP model of the integrated system can be expressed as

d

dt
Ia =

1

L
(−(jωL+R)Ia + VGa − Ea)

d

dt
VGa =

1

C
(−(jωC +

1

RL
)VGa + Ima + IPV − Ia) (5.16)

where two state variables (grid voltage and grid current) have been introduced.
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For phase b and c, the DP model of the integrated system can be expressed as:

d

dt
Ip =

1

L
(−(jωL+R)Ip + VGp − Ep)

d

dt
VGp =

1

C
(−(jωC +

1

RL
)VGp + Imp − Ip) (5.17)

where p represents either phase b or phase c.

The entire system is composed of a PV system, an induction machine, a PFC, a load and the

RL line. As a total, 17 complex state variables are presented, including the line currents (Iabc),

PFC voltage (VG,abc), induction machine stator currents(Is,pn), induction machine rotor currents

(Ir,pn), induction machine rotor speed (ωr0, ωr2), PV system state variables (output current (I1),

current before filter (I2), voltage across the LCL filter capacitor (Vc1), the stator variables in the

PR controller of the PV (X1 and X2).

The complex state variables will be separated into real and imaginary components. Therefore,

as a total, 34 real state variables are introduced for this DP model and small-signal analysis will

show 34 eigenvalues.

5.4 Case Studies

The analytical model for the entire distribution system has been derived. The model was been

built in Matlab/Simulink. The nonlinear analytical model can be linearized based on a certain

operating point using Matlab function “linmod”. Eigenvalue analysis can then be carried out

for the linearized model. The same system was also built in Matlab/SimPowerSystems based on

the physical circuit connection. The Matlab/SimPowerSystem model captures power electronic

switching details and therefore is considered high-fidelity simulation model.

Three case studies have been carried out.

• In the first case, the analytical model in Simulink is benchmarked with the high-fidelity model

in SimPowerSystmes. Dynamic simulation results are compared for the same dynamic event:

a step change in load torque of the induction machine.
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• In the second case, the effect of unbalance on the dynamic performance is investigated by

applying a ramp change in irradiance of the PV. This dynamic event emulates the cloud effect

on a PV and a distribution system.

• In the third case, the effect of grid line length on stability is investigated. Eigenvalue analysis

and dynamic simulation are carried out.

5.4.1 Case Study 1

In this part, the analytical model-based simulation results are compared with the SimPowerSys-

tems model based simulation results. A single-phase PV is connected to the phase a of the system

at the Point of Common Coupling (PCC) shown as Fig.5.1. At t = 4s, the induction machine’s

mechanical torque was applied a step change from 28 N.M to 23 N.M.
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Figure 5.7. Simulation results of torque and rotor speed due to a step change in mechanical torque
(from 28 N.M to 23 N.M).

The simulation results of the electromagnetic torque and the rotor speed of the induction

machine have been illustrated in Fig. 5.7. The dynamic responses from the two models match

each other well.

The simulation results for the line current, the line voltage and the PV current are presented

in Fig. 5.8. The line current and line voltage simulation results from both models match well,
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Figure 5.8. Simulation results of the IM stator current, stator voltage and PV current due to a step
change in mechanical torque (from 28 N.M to 23 N.M).

which demonstrates the accuracy of the analytical model derived in this chapter. The PV current

from the SimPowerSystems simulation has dynamics related to the MPPT control and the dc side

capacitor. In the analytical model, MPPT effect is neglected and the PV power is constant. VG

has negligible variation and therefore the PV current of the analytical model is almost constant.

5.4.2 Case Study 2

Eigenvalue analysis for the system with and without PV has been conducted and the results are

presented in Tables 5.1 and 5.2. It can be observed from the tables that, due to the introduction

of the PV, five pairs of eigenvalues are introduced and these eigenvalues are related to PV state

variables such the LCL capacitor voltage Vc1, PR controller state variables X1, X2 and the PV

current IPV .

In this part, the effect of the PV irradiance change will be simulated in both Matlab/Simulink

and Matlab/SimPowersystems. The PV irradiance was set to 1000 W/M2 previously. A ramp

change will be applied at 4 sec to decrease the irradiance to 200 W/M2 in 0.2 sec. Then after

1.4 sec, the irradiance will be set back to 1000 W/M2. The change of the irradiance has been

illustrated in detail in the first figure of Fig. 5.9. The second figure of Fig. 5.9 shows the PV power
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Table 5.1. Eigenvalues of the system without PV

Eigenvalue damping ratio % frequency(Hz) dominant state

-959 ± 5768i
-966± 5935i
-966 ± 5935i
-959 ± 5014i
-966 ± 5181i
-966 ± 5181i





16.4
16.07
16.06
18.78
18.33
18.33





918
945
945
798
825
825


VG, I

-133.37 ± 308i 39.68 49 Ips
-137.95 ± 117i 76.37 18.6 Ipr
-133.38 ± 445i 28.69 70.9 Ins
-137.95 ± 637i 21.15 101 Inr

-0.76 ± 754 0.1 120 ωr2
-1.54 ± 0i 100 0 ωr

Table 5.2. Eigenvalues of the system with PV

Eigenvalue damping ratio % frequency(Hz) dominant state

-966 ± 5935i
-967 ± 5848i
-993 ± 5607i
-993 ± 4853i
-966 ± 5181i
-967 ± 5094i





16.06
16.31
17.43
20.04
18.33
18.65





944
931
892
772
824
810


VG, I

{
-855 ± 8475i
-855 ± 7721i

} {
10.04
11.01

} {
1349
1229

}
Vc1{

-1.87 ± 754i
-1.87 ± 0.10i

} {
0.25
99.8

} {
120
0.02

}
X1, X2

-8218 ± 377i 99.9 60 Ipv
-133.37 ± 308i 39.68 49 Ips
-137.96 ± 117i 76.23 18.6 Ipr
-133.37 ± 445i 28.68 70.9 Ins
-137.96 ± 637i 21.17 101 Inr

-0.75 ± 754 0.1 120 ωr2
-1.52 ± 0i 100 0 ωr
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Figure 5.9. Simulation results for the effect of irradiance change.

which follows the irradiance command. The PV power of the analytical model is set to follow the

change of the irradiance. It is noticed that the maximum power level (2 kW) is obtained when

the irradiance is set to 1000 W/M2. The third figure shows the electrical torque of the induction

machine. When the irradiance is decreased due to clouds, the PV power is decreased, which leads

to decrease the unbalance injection level to the system. The magnitude of the 120 Hz ripple has

been decreased during the interval of 4 to 6 seconds. The last figure shows the PV current which

has been decreased due the irradiance change.

Table 5.3. Eigenvalue comparison for different grid length

l = 3km l = 10km l = 15km dominant State

Eigen value damping ratio % frequency(Hz) Eigen value damping ratio % frequency(Hz) Eigen value damping ratio % frequency(Hz){
-967 ± 5848i
-993 ± 5607i

} {
16.31
17.43

} {
931
892

} {
-984 ± 3942i
-973 ± 3700i

} {
24.23
25.42

} {
627
589

} {
-993 ± 3411i
-968± 3120i

} {
27.95
29.64

} {
543
497

}
VG, I

-133.37 ± 308i 39.68 49 -123.21 ± 321i 35.81 51 -116.74 ± 328i 33.53 52 Ips
-137.96 ± 117i 76.23 18.6 -126.8 ± 107i 76.49 17 -119.66 ± 103i 75.9 16.3 Ipr
-133.37 ± 445i 28.68 70.9 -123.21 ± 432i 27.38 69 -116.74 ± 426i 26.43 67.8 Ins
-137.96 ± 637i 21.17 101 -126.81 ± 647i 19.23 103 -119.67 ± 651i 18.07 104 Inr

-0.75 ± 754 0.1 120 -0.68 ± 754 0.09 120 -0.60 ± 754 0.08 120 ωr2
-1.52 ± 0i 100 0 -1.36 ± 0i 100 0 -1.21 ± 0i 100 0 ωr
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5.4.3 Case Study 3

In Case 3, impact of the line length on the system stability has been investigated by both

eigenvalue analysis and time-domain simulation in Matlab/SimPowerSystems. The eigenvalues of

the system are presented in Table 5.3. The movement of the dominant modes is presented in Fig.

5.10. One of the dominant modes is related to a real-axis eigenvalue. The grid line length has been

changed from 3 km to 15 km in order to observe its effect on dynamics. It is worth mentioning

that increasing the line length more than 15 km causes non-convergence of the sweeping method

for initialization. Therefore the results are only shown for the initial conditions where the system

is able to converge. It can be found from Fig. 5.10 that as the line length increases, the real-axis

eigenvalue will move to the right half plane. This can cause voltage instability of the system.
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Figure 5.10. The dominant modes (120 Hz, and the voltage stability mode) by increasing the line
length.

In time-domain simulations, a dynamic event to increase the grid line from 3 km to 30 km was

triggered. Initially the grid connection consists of two parallel lines. At t = 4s, a breaker of one

line is opened so the effective line impedance increases suddenly. Such an event causes the voltage

stability mode to move to the right half plane (RHP). The stator voltage of the induction machine

decreases significantly as shown in Fig. 5.11.

Fig. 5.12 presents the dynamic response of the RMS value of stator voltage from 3.5 seconds

to 6 seconds, which clearly shows the decline of the voltage magnitude.

Due to the decrease of the stator voltage and system voltage magnitude, for the induction

machine, its electromagnetic torque will decrease and its rotor speed will decrease as shown in Fig.

5.13 (a) and (b). For the PV, since the reference power is kept constant, the reference current
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Figure 5.11. Stator voltage when the grid line length increases from 3 km to 30 km, Simulation
results were produced by Matlab/SimPowerSystems.
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Figure 5.12. RMS stator voltage when the grid line length increases from 3 km to 30 km.

increases due to the decrease of the voltage. Hence, the PV current’s magnitude increases as shown

in Fig. 5.13. The entire system becomes unstable.

5.4.4 Remarks on Simulation Time

In the previous sections, it has been demonstrated that, time-domain simulation can be carried

out by the Simulink model and the detailed model in SimPowerSystems. Due to its modeling

details, the simulation time for the SimPowerSystems is considerably long. A comparison (Table

5.4) has been carried out to show the simulation time difference between the two models. Table

Table 5.4. Comparison of simulation time between two models

Time to be simulated SimPowerSystems Simulink

2 sec 4 min and 12 sec 2 sec
4 sec 9 min and 55 sec 4 sec
8 sec 18 min and 33 sec 6 sec

100 sec Memory error 58 sec

5.4 shows that the analytical model can be simulated in a much shorter period of time compared

with the SimPowerSystems model.
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Figure 5.13. Simpowersystems simulation results for the effect of grid line length increase, (a) torque
(b) rotating speed (c) instantaneous current from PV.

5.5 Conclusion

In this chapter, a dynamic phasor-based model was derived for an unbalanced distribution

system consisting of a single-phase PV, a three-phase induction machine, three phase resistive

load, and a three-phase power factor correction capacitor. The model is capable of fast time-domain

simulation and small-signal analysis. The model’s accuracy in capturing time-domain dynamics has

been validated by Matlab/SimPowerSystems based models. The model’s capability of small-signal

analysis was also demonstrated. The eigenvalue analysis results corroborate with the time-domain

simulation results in Matlab/SimPowerSystems.
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Table 5.5. Parameters of the induction machine

Total capacity 5.5 kVA

Nominal voltage 400 V

Frequency 60 Hz

Rs 2.52 Ω

Rr 2.67 Ω

Xls 3.39 Ω

Xlr 3.39 Ω

XM 197 Ω

J 0.486 kg.m2

P (poles) 4

Table 5.6. Parameters of the PV

Total capacity 2000 W

Frequency 60Hz

La 0.01 H

Lb 0.02 H

Cap 3 µH

Kp(PLL) 180

Ki(PLL) 3200

Kp(PR) 200

Ki(PR) 1500

Table 5.7. Line data of the network

Line No Line Type Z (Ω/km) Length(m)

1 ZGrid 0.579+j1.75 105
2 ZIM 0.497+j2.47 105
3 ZPV 0.462+j0.564 30

65



www.manaraa.com

CHAPTER 6

PREDICTION AND OPTIMIZATION CONTROL FOR A MICROGRID

Energy storage systems have been used in utility systems to mitigate the intermittent nature

of the renewable energy sources and provide desired demand response to utilities. In this chapter,

operation and control of a microgrid, particularly a battery system, will be investigated.

6.1 Introduction

For battery converter control, research has been conducted in the literature to investigate con-

verter control’s role in achieving power control at the grid-connected mode and voltage/frequency

control during the autonomous mode [73]. Previous work [74] designed battery management system

for battery converter control by considering the state of the charge (SOC) of the battery. In addi-

tion, previous work [75] addressed the synchronizing issues of battery converter control during the

transients of microgrid mode switching. The major test and validation tools for converter control are

based on time-domain simulation. Simulation tools such as PSCAD and Matlab/SimPowersystems

are often employed. Real-time digital simulation is also adopted to conduct time-domain simulation

for very large models in real-time for up to hours [76].

Converter control focuses on dynamic responses of short-time scales such as tens of seconds.

Operation problems or renewable intermittent mitigation problems focus on a much longer time

scales such as sub-hour or hours. Given the varying outputs from wind and solar, the role of energy

storage systems includes storing extra energy and release energy at a needed time. Due to the

capacity limits of energy storage systems, it is more reasonable to operate a battery considering

multi-time horizons ( hourly based values) instead of operating a battery just based on the current

horizon.
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Figure 6.1. Test system.

Research on how to dispatch a battery while considering the uncertainty of wind and solar re-

sulted in many types of optimization problem formulation. For example, a stochastic programming

problem is formulated in [77, 78]. Model Predictive Control (MPC) problems have been formulated

to find battery dispatch pattern [79, 80]. Model predictive control has two components: prediction

and multi-horizon optimization. First, prediction of wind, solar or load demand of a microgrid is

carried out for the desired time-horizons, say 24 hours. Next, a 24-horizon optimization problem

is formulated to find the best dispatch schedule of a battery for the next 24 horizons based on the

prediction. Only the dispatch schedule of the current step will be applied. When time evolved to

the next time step, prediction and optimization will be carried out again.

In optimization problems, system short-time scale dynamics are usually ignored at the both

problem formulation stage and validation stage. For example, among the above cited literature,

few have carried out tests in detailed-dynamic-model-based simulation. Only [79] carried out time-

domain simulation using PSCAD. However, in such simulation, converter switching and their con-
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trols were ignored and represented by a gain block only. In addition, PSCAD simulation is not

a real-time simulation and cannot reflect if an optimization scheme can be found in real time. In

order to verify the optimization and control schemes, real-time simulation based tests will be more

convincing. Such tests were carried out in [81] to verify an optimal battery schedule algorithm to

mitigate PV intermittence. The dynamic programming technique is used to solve the algorithm

within one minute. The simulation model for validation does not include power electronic switching

and converter control.

In this chapter, real-time simulation including converter dynamics will be carried out for veri-

fication. Such verification will be closer to the real-world than the verification conducted in [81].

There are two reasons to carry out the upper-level optimization more frequently instead of every

hour: (i) The prediction will be more accurate if the time horizons are near to the current stage.

(ii) The power converter controls employed in microgrids can achieve fast and flexible power control

compared to the traditional controls employed in power systems (e.g., OLTC). Therefore, in this

chapter, dispatch for every 15 minutes for the battery is examined.

The upper-level optimization will calibrate the optimal battery dispatch level at the current

step and send the power order to the battery. The lower-level converter control will follow the

power order and provide the required power. The entire architecture will be tested in RT-lab based

real-time simulation. Real-time simulation-based tests will not only provide high-fidelity system

responses, but also examine the feasibility of the optimization algorithms by monitoring CPU usage

in real time.

The contribution of the work is highlighted below.

1. Two-level design of microgrid control enables both long-term battery scheduling and fast

power control.

2. A comprehensive model of a microgrid including converter dynamics is used in real-time sim-

ulation for optimization algorithm verification. Such verification is close to the real-world

scenario due to the high fidelity model. In addition, the feasibility of the optimization algo-

rithm can be well tested.
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6.2 Test System

The community power system is a grid connected Microgrid which connects the 69 kV grid to

the Point of Common Coupling (PCC) of the 12.47 kV microgrid via a transformer. The microgrid

structure consists of a 500-kVA PV generation system , and 2 MVA wind farm based on Permanent

Magnet Synchronous Generator (PMSG) which is connected to the PCC via a 20 kM transmission

line. Furthermore, four series battery pack, each with 2kV dc voltage, 500 kWh energy capacity

is also connected to the microgrid PCC via step up transformers. The internal demand of the

microgrid consists of 1 MW dynamic load and a 1.6 MW induction machine. The system is shown

in Fig. 6.1. In this system, power electronic converter switching details and controls are all included.

Wind and PV dynamics are also included. The dynamic load is considered as a programmable load

with controllable active and reactive power commands. The battery dynamic model follows [74].

The detailed system modeling information can be found in this report [82].

6.3 ARMA Model for Estimation of Load and PV

The ARMA model or Box-Jenkins model is one of the common time series statistical models

for solving problems with large amounts of observed data in past [83]. The general ARMA model

has two parts; Auto Regressive (AR) and Moving Average (MA) and the model for forecasting a

signal at time t is expressed by:

Pred(t) =

p∑
i=1

αiPred(t− i) +

q∑
j=1

βjX(t− j) (6.1)

where Pred(t) in this study is the output power of PV and Load output, p is the order of AR

process, and q is the order of MA process. Furthermore, αi and βj are coefficients of AR and MA

processes, respectively. Finally, X(t) is a randomly produced white noise with zero mean value and

unity variance. Generally, in order to derive the ARMA model properly, historical data for a long

time should be provided. In this study, historical data for the last three months is used to derive

the coefficients of ARMA model. The main step for identifying the ARMA model is to identify the
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p and q orders with trial and error method. Next step is to determine the coefficients α and β. Step

by step procedures to derive the ARMA model is illustrated in Fig. 6.8. It can be observed that

Input the 
Historical

Data

Import 
the PV Data

Import 
the Load Data

Identify the 
ARMA Models

In Matlab, given p,q

Predict the PV 
and Load 

Power

Is the Error less than 
predefined criteria?

No

End

Yes

Update
p,q

 

Figure 6.2. Step by step procedure to derive the ARMA model for load and PV.

in the first step, historical data for the load and PV are used as two inputs for the ARMA model.

The modeling is done separately, it means that for each prediction model (PV and Load) different

ARMA model is derived and different orders will be used. The data is up to the last three months

hourly based for PV output power and load power. In the next step of identifying the ARMA

model, the historical data is used to simulate the hourly distribution of PV and load output power.

The nominal parameters of PV and load are given in Section II. Next step is to derive the ARMA

model coefficients for given p and q. Identification of ARMA model coefficients is then carried out

by the MATLAB inbuilt command. After deriving the ARMA model, the next step is to forecast

the future values. The next state update is easily calculated by [83]:
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Pred(t+ 1) =

p∑
i=1

αiPred(t− i) +

q∑
j=1

βjX(t− j) (6.2)

where Pred(t + 1) is the predicted value of PV power or load power in the next hour. The last

step is to examine the performance of the derived ARMA model. To achieve the best performance,

actual data should be compared with the forecasted value as an error. If the calculated error is

less than the predefined value, the accuracy of the ARMA model is acceptable, otherwise, system’s

order should be change and model derivation should be performed again. Normally, absolute value

of mean squared error is used as an index for calculating the error between prediction and actual

data. Obtained ARMA model parameters for PV and load are illustrated in Table 6.1. For the PV

ARMA model, p is 12 which means 12 previous hourly data will be used to predict next hour PV

power. In order to estimate the second hour first hour prediction and 11 previous hourly data will

be selected.

Table 6.1. Obtained ARMA model parameters for PV and load

DG p, q α β

PV 12, 1 [−1.94, 0.977,−0.007, 0.025, −0.987
0.070,−0.077,−0.024,−0.093,
−0.027, 0.046, 0.128,−0.132]

Load 11, 1 [−2.453, 2.040,−0.696, −0.909
0.147, 0.075,−0.056,

−0.046,−0.037,−0.215, 0.501,−0.259]

6.4 Upper-Level Model Predictive Control Based Optimization

At the grid-connected operation mode, the battery is operated for peak shaving in order to

compensate the highly intermittent nature of PV, wind and the dynamic load. The battery must

be operated efficiently to keep the power output of the microgrid (PµG) on its predetermined

reference value. The decision variable of the optimization problem is battery discharging power

(Pbatt). In optimization process, it is required to consider the power and energy limits of the

battery. As the energy stored in the battery is the integration of the battery power during the
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time, the optimization problem must be solved in a horizon of time considering the prediction of

PV generation (P predPV ) and load power output (P predload ). At each time step, the predicted values are

updated based on the real-time measurements Algorithm 1 presents the algorithm designed for the

peak shaving process. Fig. 6.3 also illustrates how the optimization machine, prediction updating

module, and RT-LAB communicate with each other.

6.4.1 The Optimization Problem

The objective of battery operation is to minimize the error between the power output of the

microgrid and its reference value for the next optimization horizon as (6.3). The optimization

problem which is solved at time step t is described as below.

min SSE(t) =

h−1∑
k=0

(Pref (t+ k)− PµG(t+ k))2 (6.3)

s.t.: ∀k ∈ [1, h− 1]

PµG(t) = PPV (t) + Pwind(t) + Pbatt(t)− Pload(t) (6.4)

PµG(t+ k) = P predPV (t+ k|t) + P predwind(t+ k|t)

+ Pbatt(t+ k)− P predload (t+ k|t) (6.5)

Ebatt(t+ k + 1) = Ebatt(t+ k)− Pbatt(t+ k)∆t (6.6)

− Pbatt ≤ Pbatt(t+ k) ≤ Pbatt (6.7)

Ebatt ≤ Ebatt(t+ k) ≤ Ebatt (6.8)

where t, t + k, and h denote the current time step, next kth time step from current time t, and

the length of the optimization horizon, respectively. (6.5) defines the total power output of the

microgrid to the main grid. (6.6) determines the relationship between the battery discharging

power and energy stored in the battery. (6.7) and (6.8) consider the battery power and energy

limitations. P predPV (t+ k|t) and P predwind(t+ k|t) represent the predicted power generations of PV and

wind at time t + k given their actual measurements until time t. Parameters of the optimization

problem are shown in Table 6.2.
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BatteryE

WindP

 
Figure 6.3. Optimization procedure for real-time digital simulation of the microgrid.

Table 6.2. Parameters of the optimization problem

Parameter Value

Pbatt 2 MW

Ebatt 1.9 MWhr

Ebatt 0.2 MWhr

h 4 hours
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6.4.2 Prediction Procedure

At each time step t the prediction module updates the predicted values for PV output (P predPV ),

wind prediction (P predwind) and load (P predload ) for the time steps {t+1, t+2, ..., t+h−1}. PV and Load

prediction have been done utilizing proposed ARMA models. Actual PV data recorded from USF

power group SEEDS2 project has been used for training and testing the ARMA model. Training

data are selected from January 2nd to April 2nd of year 2014 as presented in Fig. 6.7. Testing

data is selected between April 9th to 11th of the data gathered from USF St. Petersburg airport

site as presented in Fig. 6.8. Real load data are obtained from [84]. Three months of data are

used for training the ARMA model. A different statistical approach is applied for wind generation

prediction.

kwind(t) =
Pwind(t)

P refwind(t)
(6.9)

P predwind(t+ k|t) = kwind(t)P
ref
wind(t+ k) (6.10)

where Pwind(t) is the actual value measured for wind power generation at time t. The reference

pattern of wind generation P refwind is produced based on a random process. The prediction module

compares the wind power measurements with its reference patterns to define its scale factor, kwind.

This scale factor is used to update the prediction of wind farm generation levels.

Applying (6.9) and (6.10) to (6.5) leads to a new expression for the prediction:

PµG(t+ k) = P predPV (t+ k|t) + kwind(t)P
ref
wind(t+ k)

+ Pbatt(t+ k)− P predload (t+ k|t) (6.11)

The entire algorithm is summarized in Algorithm 1. The optimization problem formulated is

a linear programming problem and will be solved by Matlab toolbox CVX [85].
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Algorithm 1 Optimization of Battery Operation at time step t

Estimate the energy stored in the battery based on measurements Ebatt(t).
Measure PV output power and update the predictions using ARMA model.
Measure Load power and update the predictions using ARMA model.
Measure wind farm generation and update the predictions according to the wind generation
pattern.
Solve (6.3) considering the constraints (6.6)-(6.8).
Apply Pbatt(t) to the system.
Wait for the optimization request signal.

6.5 Lower-level Converter Controls

The battery system can be operated at either the power control or the voltage/frequency control

modes. The former mode can be used when the microgrid is grid-connected and the second control

mode is applied when the microgrid is at its autonomous mode. An equivalent model of a voltage

source converter (VSC) connected to ac sources is shown in Fig. 6.4.
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Figure 6.4. Equivalent model of a voltage source converter connected to ac source.

Assuming that the operating condition is three-phase balanced, then the space vector variables

for the current (ip where p = a, b, c) and voltages (vp1 and vp) relationship can be expressed as

follows.

−→v = −→v 1 −R
−→
i − Ld

−→
i

dt
(6.12)

where −→. represents the space vector (
−→
f = 2

3fa + ej2π/3fb + e−j2π/3fc).

For three-phase balanced variables with a constant synchronous frequency ωs,
−→
f = F̄ ejωst,

where F̄ is called a complex vector, which is be a constant vector at steady-state. (6.12) can be
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represented completely by complex vectors as presented in (6.13).

V̄ = V̄1 −RĪ − L
dĪ

dt
− jωsLĪ (6.13)

where F̄ = fd + jfq.

Therefore the VSC model presented in Fig. 6.4 can be modeled in a synchronous reference

frame as in (6.14) and (6.15),

vd1 = −(Rid + L
did
dt

) + ωsLiq + vd (6.14)

vq1 = −(Riq + L
diq
dt

)− ωsLid (6.15)

Cf
dvd
dt

= ωsCfvq + id − iLd (6.16)

Cf
dvq
dt

= −ωsCfvd + iq − iLq (6.17)

where vd, vq, vd1, and vq1 represent the d and q components of the point of common coupling

(PCC) voltage (va, vb, vc)and VSC output voltage(va1, vb1, vc1), respectively, and id, iq, iLd and iLq

represent the d and q components of the current flowing to the VSC(ia, ib, ic) and current flowing

from the PCC (iLa, iLb, iLc), respectively.

The representation of the system model in the synchronous reference frame helps derive the

control schemes. The control system of a VSC consists of two loops: inner current control loop

and outer control loop. The outer control loop is active power control loop when the microgrid is

grid-connected. When the battery is supplying an autonomous microgrid, the outer control loop

will be switched to ac voltage and frequency control. Inner current control can be derived based

on the system model (6.14) and (6.15) [86, 87, 88, 89].
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6.5.1 Power Control Loops

If the d-axis of the synchronous frame is aligned with the complex vector of the grid voltage V̄ ,

then vq = 0. The complex power flowing to the grid before the capacitor can be expressed as:

P + jQ = (vd + jvq)(id − jiq) (6.18)

Therefore P = vdid and Q = −vdiq. If the grid voltage is assumed to be constant, the active

power sent from the converter to the grid is dependent on the d-axis current id only. The reactive

power sent from the converter to the grid is dependent on the q-axis current iq only. Decoupled PQ

control can be realized by controlling dq-axis currents respectively. Fig. 6.5 presents the outer power

control loops where P and Q are measured and compared with their references. The errors are

passed through PI controllers respectively to generate desired dq current references. Inner current

controls will track these reference values in a much faster fashion. Therefore, the bandwidth of the

power control loop will affect the response time of the battery system.

4

4

4

Figure 6.5. Power control strategy of the inverter.
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6.5.2 Inner Current Control Loops

The objective of the inner current control is to track the current references by adjusting the

converter output voltage. The control is realized in the dq reference frame through PI controls,

cross coupling and feed-forward blocks [73].

Based on the system model presented in (6.14) and (6.15), fictitious plant inputs ud = vd1 −

vd − ωsLiq and uq = vq1 + ωsid can be assumed. Therefore the plant models become:

id
ud

=
1

R+ Ls
(6.19)

iq
uq

=
1

R+ Ls
(6.20)

For each plant, we can design a PI controller to track the reference current. To generate the

desired converter voltage, cross coupling and feed forward blocks are then needed to find vd1 (vd1 =

ud + ωsLiq + vd) and vq1 (vq1 = uq − ωsLid) as shown in Fig. 6.5. The dq-axis voltages are then

converted to the desired abc voltages. Through PWM or space vector PWM switching schemes,

the converters will generate voltage with fundamental waveforms same as va1, vb1 and vc1. The

detailed design procedure can be referred from [73].

6.6 Tests

Case studies are included in this section. The microgrid is modeled in real-time simulator

(RT-LAB) and the prediction and optimization process are carried out in MATLAB. The interface

between Matlab and RT-LAB is also created. The Matlab CVX optimization toolbox is in charge

of the optimization process. The optimization result ( Battery power in this case ) is sent to the

Microgrid model in RT-LAB in order to optimize the entire system and minimize the objective

function. Such an interface is shown in Fig. 6.6. It should be noted that the measured data is

also sent from the Microgrid model to the prediction process for predicting the PV, load and wind

power for the next three hours.
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Figure 6.6. General structure of implementation of the proposed algorithm.

6.6.1 Test 1: Prediction Validation in Simulink

The three months data for PV prediction is obtained from SEEDS project sponsored by Duke

Energy. Fig. 6.7 shows the PV data captured for three months, which is used for deriving the

ARMA coefficients.
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Figure 6.7. Three months real data captured by PV for SEEDS project.

In-order to test the ARMA prediction, PV estimation process for three days is illustrated in

Fig. 6.8. The prediction is carried out for the next three hours. As it is illustrated, the prediction

process accuracy is low for 3rd hour PV power prediction.
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Figure 6.8. Prediction of PV power by ARMA model for different hours ahead.

6.6.2 Test 1: Peak Shaving at Grid-Connected Mode

In this case study, the MPC is designed considering next 4 hours. Every 10 minutes, the

prediction of PV, load and wind generation will be updated and the optimal dispatch of the battery

will be decided based on the optimization algorithm. This 4 hour horizon will be moved every 10

minutes creating a moving horizon optimization. Fig. 6.9 depicts the PV, load and wind power

outputs for a 24-hour simulation. The real-world PV data from SEEDS2 project located in St.

Petersburg, FL has been used to derive the PV power pattern in this case and load data simulated

from [84], while the wind power pattern has been generated via a random process in MATLAB.

Since 4-hours horizon is considered in the upper level optimization, the PV, load and the wind

power have to be forecasted for the next four hours. It is assumed that the current measured value

will be kept for one hour, next three hours of PV and load powers are predicted using the proposed

ARMA model.

The upper and lower limits of the SOC of the battery have been selected as 90% and 10%

respectively. Thus, the maximum and minimum energy stored in the battery is 1.8 and 0.2 MWh.

Moreover, the maximum battery power is 2 MW. The optimization problem is solved for 4-hours

time horizons. In RT-LAB simulation, every minute in the real world is represented by 4 seconds

to reduce the simulation time. The optimization procedure is requested every 10 minutes. The

model is to be run for 1 hour and 36 minutes to simulate a 24-hour operation of the microgrid.

Fig. 6.10 shows the power output of PV, load and wind versus PV, load, wind and battery. It

illustrates how the battery contributes to the microgrid operation for peak shaving. According to

the results, the battery could not completely compensate the deviation of the PV, load and wind
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output from power reference point. The capacity of the battery that has been utilized during the

simulation is presented in Fig. 6.11.
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Figure 6.9. Power generation from each DG.
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Figure 6.10. Total dynamic power contribution in the microgrid with and without battery.

6.6.3 Test 2: Sensitivity Analysis of Battery Size

In this case sensitivity analysis is conducted to validate the effect of battery size on microgrid

performance. Two different battery sizes are considered in this case which are 4 MWh and 10

MWh. Fig. 6.12 shows the effect of different battery size on microgrid power. When there is no

battery, the microgrid power will face with a lot of changes during the time. However, by adding

the battery, the microgrid power will be smoother. It is also noted that when the battery power is

increased to 10 MWh, microgrid power is more flat because the battery has compensated using its

higher capacity.
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Figure 6.11. Battery power and energy stored in the battery.
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Figure 6.12. Effect of battery size on microgrid total power.

Fig. 6.13 shows the comparison between total power without battery and battery power in

two cases. It is observed that when there is a 10 MWh battery in the system, the battery can

compensate the microgrid power. Here, the system power represents the power exported to the

main grid and the battery power represents the generated power from the battery. Therefore,

negative sign of the battery power means the battery is being charged.

0 4 8 12 16 20 24
−2

−1

0

1

2

Time ( Hours )

B
at

te
ry

 a
nd

 s
ys

te
m

 p
ow

er
 (

M
W

)

 

 

battery power (4 MWh)

battery power (10 MWh)
system power without Battery

Figure 6.13. Comparison between 5 MWh and 10 MWh battery for total microgrid power.
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6.6.4 Test 3: Real-time Simulator Performance

The third case is carried out to investigate the performance of real-time simulations for opti-

mization algorithms. In order to evaluate the real time performance in RT-LAB simulation, every

minute in the real world is represented by 60 seconds which exactly provides real-time results. The

optimization procedure is requested every 10 minutes and RT-LAB simulation step size is set to

25 µs. Performance of battery energy storage system in following the reference power is shown in

6.14. In order to compare the RT-LAB speed, the second sub-figure shows the response time of

RT-LAB to the power reference change. The response of the battery model in RT-LAB is observed

as 4 seconds, which means the bandwidth of the battery power control is 4 seconds.
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Figure 6.14. RT-LAB performance in tracking the reference battery power.

Fig 6.15 shows the battery active power, reactive power and output voltage for 6 hours. It

is observed that the battery power command can be successfully followed by the proposed con-

troller. Furthermore, the reactive power reference is set to zero, which is kept constant during the

optimization process and the voltage is also kept constant at the rated value (13.8 kV).

6.7 Conclusion

A two-level optimization and control architecture for a microgrid has been designed and tested

in RT-lab based real-time digital simulation. During the grid-connected mode, at the upper-level for

every 10 minutes, wind power, load and PV power output for four hours time horizon are estimated.

Then the battery dispatch profile for the next 4 hours is determined with SOC limits considered.
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Figure 6.15. Battery measurements and commands in RT-LAB.

The current step battery dispatch level will be sent to the battery converter power control as the

power order. The lower-level converter control makes sure the battery will follow the command.

Real-Time simulation of a Microgrid including detailed PV, wind and load structure is carried

out in RT-Lab to test the proposed optimization algorithm. Simulation results demonstrate the

effectiveness of the two-level optimization and control architecture. Higher Battery energy storage

systems can be implemented to fully compensate the intermittent nature of the dynamic DGs. The

proposed upper level control can be adopted to the future USF St. Petersburg microgrid which

consists of 100 kW PV station, 200 kW energy storage system, and controllable loads.

Table 6.3. Parameters of the system

Fig. 4 R 0.01 Ω
L 0.012 H
Cf 1 µF

Fig. 5 Kp 0.001
(PQ loop) Ki 0.5

Fig. 6 Kp 1.673
(V F loop) Ki 374.75

Figs. 5-6 Kpi 5
Current loop Kii 50
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CHAPTER 7

MICROGRID OPERATION WITH INTERMITTENT LOADS

This Chapter 1 presents, modeling and simulation of intermittent loads in a Microgrid.

7.1 Introduction

Microgrid concept has attracted much attention today, due to its reliability, efficiency and

low operation cost. Renewable Energy Sources play a major role in this concept and due to

the intermittent nature of renewable energy such as wind and solar, operational implications will

occur. Certain loads such as pulse power loads (PPL) and electric cars [90] will increase these

implications. Hence the system impact of these kinds of loads should be studied in order to provide

better solutions. Among these loads PPLs have a major effect on the stability of the system due

to their highly intermittent nature.

The PPLs are largely employed in areas of high power radars, lasers, high energy physics

experiments and weapon systems such as rail guns [91, 92]. The peak power of a pulse load can

vary from several hundred kW to several hundred MW and the time duration is typically from

microseconds to seconds[92, 93]. Some PPLs are directly connected to the main grid. But if the

PPL power demand cannot be met by a direct connection due to the impact on the power quality of

the system, PPL will be connected to an energy storage device, generally a capacitor which has to

be charged within a certain amount of time. Then the storage will be discharged rapidly providing

the power to the pulsed load.

If the PPL is connected to the power system through a capacitor, the main method of controlling

above effects is controlling the charging current of the storage element. Some work[94, 91] has been

1This section is based on the work published in journal of Technology & Innovation 14.2 (2012): 167-178. Per-
mission is included in Appendix A.
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done related to this. They have proposed Limit Based Control (LBC) [94], Trapezoidal Based

Control(TBC) [94] and Profile Based Control (PBC) [91] which will reduce the impact of PPLs on

the microgrid power system.

Since the Renewable Energy Sources (RES) play a major role in a microgrid, Power Electronic

Converters are necessary parts of a microgrid. Back to back converters hugely employ in wind

power generation either with Doubly Fed Induction Generators (DFIG) or Permanent Magnet

Synchronous Generators (PMSG) while inverters are frequently used with battery storage systems

and solar power. Though many work[91, 92, 93, 95, 94] have been done related to PPL impact,

most of them [91, 94, 93] consider the PPL connected to a shipboard power system which includes

a single generator unit and propulsion system as the main load. Therefore an investigation has to

be done to see the PPL impact on the stability of a microgrid with power electronic converters and

how these converters can participate to improve the system stability. Hence for the proposed work,

a microgrid with Voltage Source Converter (VSC) based inverter and a synchronous generator are

considered in order to provide a better approach towards the smart grid. Microgrid system models

used in [96] and [91] are considered as major references when implementing the study system for

this work. Microgrid behavior under different control architectures is discussed in this chapter.

The work done in [91] considers the impact of a PPL load on the system voltage profile only.

For the work here, the impact on both the voltage and the frequency of the microgrid system is

considered.

7.2 Power Management in Microgrid Systems

Architecture of the microgrid can be explained in two levels, Component Level and the Manage-

ment Level (Control Level). The microgrid is in fact a subpart of a power distribution system. It

consists of Distributed Energy Resources (DERs) and loads. DERs include Distributed Generation

(DG) units and Distributed Storage (DS) units. Loads include residential type loads, commercial

type loads and industrial parks. Microgrid is connected to the utility grid through Point of Common

Coupling (PCC) which is located at the low voltage bus of the substation transformer.
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Two control strategies are generally exercised in Microgrid Control and they are centralized

control and decentralized control.In centralized control, Microgrid Central Controller (MCC) is

responsible for a major part of controlling. It issues the commands such as power production

set points to the DERs and set points for loads to be served and shed. Function of the Local

Controllers (LCs) in centralized control is, following the MCC instructions. The main disadvantage

of the centralized control is the high cost involves with the fast communication system. This

problem can be avoided by occupying decentralized control in power management. Droop control

is an example of a decentralized control [2, 3, 4] and will be discussed in the following paragraphs.

In central control architecture, the inverter’s active power and reactive power references are set

by the central controller. These values are set according to the power requirement of the PPL.

This can be achieved through fast communication between Microgrid Central Controller (MCC)

and Local Controllers (LCs) of the PPL and the inverter.

In decentralized control, the power references are set according to the local measurements of

frequency and voltage. Control block diagram of the inverter is presented in Fig.7.1. Reference

values for the active and reactive power is calculated according to the droop characteristics of the

inverter [96].
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Figure 7.1. Control diagram of the inverter.

Assuming the slope of the f -P characteristics of the inverter is Rf , the active power change of

the inverter for a small change of frequency is given by,

∆P = − 1

Rf
∆f (7.1)
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Similarly for a small change in voltage, the required reactive power is given by,

∆Q = − 1

Rv
∆V (7.2)

where Rv is the slope of the V -Q characteristics.

Using the droop control, a VSC interfaced distribution energy resource can respond to the local

measurements and adjust its power output automatically.

7.3 Study System

PPL

DG1 - Synchronous Generator (60kVA)

DG2                            - Inverter (20kVA) 

PPL                            - Pulsed Power Load (18kW)

560 V

15 kW
5 kVar

DG2

19 kW

Inv

18 kW

SG

DG1
10 kW

DC

Figure 7.2. Single line diagram of the microgrid.

Fig. 7.2 shows the single line diagram of the system which is built for the case study here. It

contains two DG units, including a diesel engine synchronous generator and a converter-interfaced

DER. The system is very similar to the shipboard power system employed in [91] except for the

fact that the proposed study system has a VSC based inverter as a DER. The rated voltage of the

system is 560V. This system includes 60 kVA Synchronous generator and 20kVA inverter based

DER. It is assumed that in normal operation the inverter is operating at 10kW and 5kVar. The

system consists of 52 kW and 5kVar constant power loads and a 18 kW peak power pulsed power

load.
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Figure 7.3. Schematic diagram of the VSC model.

7.3.1 Diesel Engine Synchronous Generator

Synchronous generators in the proposed study system are driven by diesel engines. The diesel

generator includes three main parts, which are synchronous generator, governor control and the

excitation system.

The synchronous generator used for the proposed study is a salient-pole type which is im-

plemented as a model in PSCAD library. Woodward governor model which is a speed governor

typically employed with synchronous generators[97] is used in-order to provide torque input to the

synchronous generator. The input to the governor control is the offset of the actual speed and

the reference speed and the result is a controlled output torque, which will be sent to the input

torque of the synchronous generator in-order to minimize the offset. Since the reference speed is

set according to the system frequency, which is 60-Hz for the proposed study system, Governor

control is responsible for keeping the system frequency within the limits.

Automatic Voltage Regulator (AVR) is employed to maintain a constant voltage at the terminals

of the synchronous generator. This will control the excitation current of the machine, consecutively

keeping the terminal voltage at the rated value.

7.3.2 VSC Based Inverter

Since Converter-interfaced DERs are generally connected to a rectifier, for simplicity a DER

can be modeled with a constant dc source connected to an inverter which is based on VSC topology
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[98]. The schematic diagram of a VSC model is presented in Fig. 7.3. Here the resistance, R and

the inductance stand for equivalent resistance and inductance between the converter and the grid.

Vdc represents the dc voltage while va1, vb1 and vc1 stand for the ac voltage generated by the VSC

at nominal frequency. The grid voltages are symbolized as va, vb and vc. The currents denoted by

ia, ib and ic are flowing into the converter. Thus, they should be negative while DER provides the

power to the system.

The VSC model dynamics in abc frame can be obtained by applying KCL and KVL to the

system.


va

vb

vc

 = R


ia

ib

ic

+ L
d

dt


ia

ib

ic

+


va1

vb1

vc1
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Applying coordination transformation from abc to d-q reference frame,(3) can be written as

 vd

vq

 = R

 id

iq

+ L
d

dt

 id

iq

+ ωsL

 −iq
id

+

 vd1

vq1

 (7.4)

where ωs is the angular frequency of the AC system. However the angle, (θ) between two reference

frames is required to do the abc to d-q transformation. This can be measured using a Phase-

Locked-Loop (PLL)[98, 4, 99].

The active power and reactive power flowing into the VSC inverter can be written as [100, 99],

P = vdid + vqiq (7.5)

Q = vqid − vdiq (7.6)

If the d axis component of the converter ac voltage is aligned along with its space vector, the q

axis component will be zero. Hence equations (7.5) and (7.6) can be modified as,

P = vdid (7.7)
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Q = −vdiq (7.8)

This proves that the active power can be controlled by id while the reactive power can be

controlled by iq.

7.3.3 PPL Model and Control

Current 
Controller

Pulsed Load

C

Filter 
Circuit

Buck 
Converter

Figure 7.4. PPL model.

As mentioned earlier in this chapter a PPL can be connected to a microgrid either directly or

through a storage element. In this particular study system, at steady state, the DERs are operating

close to their rated power values. Consequently the system is working in its marginal conditions.

Hence a directly connected PPL will cause the system to go unstable due to the total peak power

demand of PPL and the constant power loads will exceed the total generating capacity. For the work

here a PPL connected through a capacitor is considered since a proportional control mechanism

can be employed to charge the capacitor while maintaining the stability of the microgrid system.

Frequency of occurrence of the PPL depends on the application of the PPL. But it is common

practice to charge the capacitor as quickly as possible [91, 93, 94].

P 
Controller

Current limit Power limit

Vc_ref

Vc

Ic_ref

Figure 7.5. Capacitor current control (limit based control).

Fig.7.4 presents the PPL model used for the proposed case study. It consists of a three phase

rectifier, a filter circuit and a buck converter. The charging current of the capacitor can be controlled
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by adjusting the duty cycle of the buck converter. The control objective here is to charge the

capacitor as quickly as possible while maintaining the stability of the system. Limit Based Control

(LBC) control [94] is employed to achieve the above objective. The control block diagram is shown

in Fig.7.5. Here current limit is set based on the maximum current capacity of the PPL rectifier and

the buck converter while the power limit is set based on the maximum power transfer capability of

the system.

The parameters of the PPL model are listed in Table 7.1. The parameters of the synchronous

generator for the diesel engines are listed in Table 7.2. The parameters of the inverter model are

listed in Table 7.3.

Table 7.1. PPL model parameters

Storage circuit parameters: C = 2.02F , L = 3mH , R = .25Ω

Filter circuit parameters: L = .113mH , R = .25Ω , C = 1.4µF

Table 7.2. Synchronous generator parameters in per unit

Inertia of the generator: H = 3.117s

Ra = .0052

Xd = 1.014 , X ′d = .314 , X ′′d = .28

Xq = .77, X ′′q = .375

T ′do = 16.55 , T ′′do = 0.039, T ′′qo = .071

Table 7.3. Inverter model parameters

VDC = 2kV , C = 50µF

Controller parameters: kp = .01 ,ki = .001s

Transformer parameters: X = .1

Line parameters: L = .01H , R = .001Ω

7.4 Simulation Results

The proposed Microgrid is implemented using PSCAD/EMTDC software package. PSCAD

model for the Microgrid is shown in Fig. 7.6 and it represents the system shown by the single

line diagram in Fig. 7.2. If the Microgrid is connected to the main grid which can be considered

as the infinity bus, the impact of PPL will be minimized due to the high inertia of the infinity
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Figure 7.6. PSCAD model of the microgrid.

bus. However when the microgrid is operating in islanded mode the PPL has a considerable effect

because of the low inertia of the system. Therefore the work here is focused on the impact of the

PPL in islanded mode operation.
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Figure 7.7. PPL power with limit based control.

Limit based control is implemented to control the charging current of the PPL storage capacitor.

Only one PPL charging cycle is considered within 100-s in order to compare the system behavior

for different control architectures. Fig. 7.7 shows the active power transferred into the capacitor

during the charging process. Charging process starts at t=10-s and stops at t=33.4-s. Hence the

charging time of the capacitor is 23.4-s with the limit based control. It can be seen that until t=
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26.5-s current limit is effective and after that power limit is dominating the controlled charging

current of the capacitor. Since the objective of this work is to study how to use an inverter based

DER to reduce the impact of PPL load on the microgrid system stability, two main cases are

considered to support that. These two cases represent the passive control and the active control of

the inverter.
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Figure 7.8. Passive control of the inverter, (a) angular frequency of the system (b) system voltage
(c) active power from the inverter (d) active power from synchronous generator.

7.4.1 Passive Control of the Inverter

In this case the inverter doesn’t participate in controlling frequency and the voltage of the

system. It just provides fixed P and Q to the system. Hence only the Synchronous generator

is responsible of maintaining the system frequency and the voltage at nominal values. Fig. 7.8

presents angular frequency, system voltage and active power contribution from each generator for

this case. It is visible that only the synchronous generator supplies the power required by PPL.

Transients can be observed in system frequency and voltage profiles. Voltage fluctuation of the

system is about 2.7% at 33.5-s which is above the maximum permissible voltage fluctuation, 2%

(when the fluctuations per minute is 1) [101, 102]. This will cause visible and uncomfortable voltage

flicker in the system. Frequency fluctuation of the system is about 4% and which will effect on the

transient stability of the system. However the limit based control implemented for the charging
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process of the capacitor, and the control system of the synchronous generator ensures the dynamic

stability of the system.

7.4.2 Active Control of the Inverter

In this case inverter is actively participating in controlling the system frequency and the volt-

age. The control strategies presented in section II, centralized and decentralized controls are im-

plemented for the inverter control.

7.4.2.1 Centralized Control
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Figure 7.9. Active control of the inverter with centralized control compared to passive control, (a)
angular frequency of the system (b) system voltage (c) active power from the inverter (d) active
power from the synchronous generator.

The inverter active power and reactive power references are set by the central controller. These

values are set according to the power requirement of the PPL. The voltage at the capacitor will

be measured. The power requirement is computed based on the measurement and the reference

current order and will be sent to the inverter. This can be achieved through fast communication

between the Microgrid Central Controller (MCC) and Local Controllers (LCs) of the PPL and

the inverter. Fig. 7.9 shows a comparison of the angular frequency, system voltage and active

power contribution from each generator with passive control and centralized active control. Since
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the inverter is participating in providing power to the PPL, system transients are much lower in

active control. Frequency fluctuation of the system is about 1% which is acceptable and the voltage

fluctuation of the system is about 2.0% which is at maximum permissible voltage fluctuation level

[101, 102] resulting visible voltage flicker in the system. The dynamic stability of the system is

improved compared to the passive control. Note that the maximum power from the inverter is

limited to 20 kW. The rest of the power demand will come from the synchronous generator.

7.4.2.2 Decentralized Control

In this control architecture LC of the inverter is responsible for keeping the voltage and the

frequency of the system at nominal values. This is achieved through implementing frequency and

voltage droop control within the inverter control. Control block diagram of the inverter is presented

in Fig.7.1. Reference values for the active and reactive power is calculated according to the droop

characteristics of the inverter.

Figure 7.10. Angular frequency and the voltage of the system for different Rf and Rv.

Fig. 7.10 shows the system frequency and the voltage behavior for a PPL starts at 39 seconds

and stops at 63 seconds at different Rf and Rv values. It can be seen that the lower the Rf and

Rv are, the faster the response is from the inverter. However, if Rf or Rv is too small, the control
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Figure 7.11. Power output from the inverter for lower Rf and Rv.

loop of the inverter goes unstable and the output power oscillates as shown in Fig. 7.11. Hence Rf

is chosen to be 25 while Rv is set to .5.
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Figure 7.12. Active control of the inverter with decentralized control compared to passive control,
(a) angular frequency of the system (b) system voltage (c) active power from the inverter (d) active
power from the synchronous generator.

Fig. 7.12 presents a comparison of the angular frequency, system voltage and active power con-

tribution from each generator with passive control and decentralized active control. Here frequency

transients and the voltage transients of the system are dying out much quicker compared to other
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control mechanisms. Frequency fluctuation of the system is about .7% and the voltage fluctuation

of the system is about .4% which is well below the permissible voltage fluctuation level [101, 102].

The dynamic stability of the system is much better compared to the other two control methods.
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Figure 7.13. PPL power with limit based control.

Fig. 7.13 shows the charging power profile of the PPL capacitor with an increased power limit

compared to the previous charging profile with low power limit. About 3 % improvement can be

observed in the charging time with an increased power limit. The angular frequency profile and

the voltage profile of the system for the above case is presented in Fig. 7.14.

To show a more realistic picture of the PPL, a repetitive pulsed load is simulated with the

passive control and the decentralized control. The pulsed load is simulated in every 40-s as shown

in Fig. 7.15 .The angular frequency and the voltage profile comparison is made in Fig. 7.16.

7.5 Conclusion

This chapter presents a study of microgrid operation with pulsed power loads and how to utilize

inverter based DERs to improve the stability of the system. Same power limit was considered for

limit based control in all three cases in order to provide a better comparison based on stability.

However with the active control the power limit can be increased further without affecting the

system stability. This will lead to a shorter charging time which will be a major advantage for
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PPLs. It is observed that the fully autonomous operation of a microgrid can be achieved by

implementing decentralized control in the inverter and decentralized control with droop control is

better than the passive control and the centralized control to handle the transients caused by PPLs.
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Figure 7.14. Effect of increased power limit in active control of the inverter with decentralized
control, (a) angular frequency of the system (b) system voltage.
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Figure 7.16. Active control of the inverter with decentralized control compared to passive control
for repetitive PPL, (a) angular frequency of the system (b) system voltage.
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CHAPTER 8

RT-LAB MODELING AND HIL SETUP FOR MICROGRIDS

8.1 Introduction

This chapter presents modeling and simulations of microgrids in a real time simulator. The

first section 1 demonstrate a HIL test bed to test the real battery system connected to real time

simulation model of a microgrid implemented in RT-LAB. Modeling of a single phase PV system

for real time simulation is presented in next section 2.

8.2 Real-Time Simulation and Hardware-In-The-Loop Tests of a Battery System

Simulating the physical system will be the ideal way to test the behavior of the control and

operation of the system. However, building a tested with the full physical system is expensive.

Hence HIL simulations are one of the cutting edge technology emerging in todays world. Here, the

system is built on a hybrid platform, consist of physical systems and system software. Some work

dedicated to HIL studies can be found in the literature [103, 104, 105, 106]. Lithium ion batteries

have a significant share in the electronic market and are penetrating into the electric vehicle market

and grid storage market today. Inherent benefits of Li-ion batteries such as 80% Depth Of Discharge

(DOD), higher energy density (up to 115Wh/kg) and better efficiency (90-96%) [107] make this

transition faster. As with any other type of batteries, Li-ion batteries also degrade over time due

to various factors. Hence it is vital to study the degradation of these batteries in order to identify

the conditions that effect on the degradation. HIL simulation can be adopted to study this battery

degradation and its characteristics. A microgrid system composed of a wind farm, a PV system,

1This section is based on the work published in Power & Energy Society General Meeting, 2015 IEEE. Permission
is included in Appendix A.

2This section is based on the work published in PES General Meeting Conference & Exposition, 2014 IEEE , vol.,
no., pp.1-5, 27-31 July 2014. Permission is included in Appendix A.
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a battery energy storage system, a plug-in electric vehicle (PEV) and loads have been built in

RT-LAB simulators to achieve the above task. Here the battery system is replaced with the real

battery pack and several case studies were conducted to demonstrate the capabilities of the test

bed.

8.2.1 System Topology

69 kV/13.8 kV69 kV
Grid

PCC
IM

2MW PV

AC/DC

mV

AC/DC 2kW PEV

PMSG

0.73kV, 2 MVA

DC/AC

AC/DC

Battery
8kV

2MWhr

Rectifier 
Load

1.6MW

13.8/2.4

13.8/3.3

13.8/0.24

13.8/0.575

13.8/3.3

20km

AC/DC

 

Figure 8.1. Microgrid topology.

The microgrid which is implemented in RT-LAB is presented in in Fig. 8.1. Here the microgrid

is consist of a battery energy storage system, a PV system, a wind farm, a plug-in electric vehicle

(PEV) and loads. The battery system which consist of two battery packs connected in series has

a capacity of 2 WMh and capable of providing 2 MW maximum power. Each Battery pack rated

voltage is 4.1 kV. The rated capacity of the PV array is 2 MW with 2 kV dc voltage. PV system is

working in Maximum Power Point Tracking (MPPT) control mode. The 2 MW wind farm consists

of the wind turbine model, Permanent magnet Synchronous Generator (PMSG) and back to back

converter. Table 8.1 lists the parameters of each component in the microgrid.
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Table 8.1. Simulation system parameters

Quantity Value

ac grid voltage 69kV (L-L RMS)

Induction machine ratings 2.4kV, 1.6MW

PEV battery ratings 0.375kV, 53kWhr

Battery ratings 8.2kV, 2MWhr

PV ratings 2kV, 2MVA

PMSG ratings 0.73kV, 2MVA

Load ratings 100ohm+500mH

LABRT 

Computer

Host

Load

PackBattery

Charge Discharge

Source

Current
leProgrammab

 

Figure 8.2. HIL testbed setup.

8.2.1.1 HIL Testbed Setup

A real battery cell with the rating of 3.2 V, 40 Ahr is used to implement the HIL system as

illustrated in Fig. 8.2. Since the battery system in the microgrid ratings are higher, the scaling

factors are used to convert voltage and current measurements and commands back and forth. Here

scaling factors are chosen as 2560 and 6 for the voltage and the current. An external controlled

voltage source is utilized to represent the battery system in the RT- LAB Simulink model. Here the

external control signal is received via scaled up analog input of the Rt- LAB device. This Analog

signal is nothing but the voltage measurement of the real battery pack. The DC current flowing

from the Simulink model battery system is measured and scaled down signal is sent via the analog

output to the programmable current source(Magna) or load (BK 8500). Fig. 8.3 demonstrate the

configuration for the HIL simulation of the battery system .
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Figure 8.3. Hardware-in-the-loop simulation of the battery system.

8.2.1.2 Battery Inverter Control

The implemented battery inverter has the capability of operating in 3 modes: power control,

dc-link voltage control and voltage/frequency control. One of the first two modes can be employed

when the microgrid is connected to grid while the last mode can be used for islanded operation.The

control loop of the VSC controller shown in Fig. 8.4 consist of two control loops: inner current

control loop and outer control loop. While the inner control loop controls the current outer control

loop can be either active power control or dc voltage control or ac voltage and frequency control

[108, 109] depends on the mode of operation.
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Figure 8.4. Control of the battery inverter.

An upper level control strategy which is presented in Fig. 8.5 is implemented to monitor the

battery SOC and protect the batteries from over charging or discharging.
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Figure 8.5. Upper level control considering SOC.

8.2.1.3 Coordinated Control of Battery and PV

Here, the coordinated control strategy make sure that the total power produced by PV and the

battery keep at a constant value. This is achieved via controlling the power of the battery according

to the PV power output. This will compensate the intermittent nature of the PV output and make

sure to have a smooth total power injection. The coordinated control strategy considering battery

SOC limits is presented in Fig. 8.6.

Measure

PVP and SOC

calculate
PVP1

MaxMin SOCSOCSOC 
no

yes

PVBattery PP 1

0BatteryP

 

Figure 8.6. Coordinated control of a battery and a PV.

8.2.2 Simulation Results for Battery Performance in Microgrid

8.2.2.1 Base Case

Battery power order and the actual power of the battery is shown in Fig. 8.7. Here battery

is operating in P − Q control mode and the results validate the accurate operation of the imple-

mented control mode. Negative sign indicates charging of the batteries and positive sign indicates

discharging the batteries.
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Figure 8.7. Reference active power change for a battery connected to the microgrid.

8.2.2.2 Performance of PV and Battery

Fig. 8.8 shows the results of the implemented, coordinated control strategy. Here the total power

from PV and the battery is set to 1 MW. The irradiance level is changed during the simulation and

battery power output changes accordingly. Due to a sudden irradiance change after 1 hour, the PV

power falls down from 0.35 MW to −0.5 MW, and the battery power will increase from 0.65 MW

to 1.5 immediately to compensate this PV power change.
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Figure 8.8. Coordinated control of battery and PV.

8.2.2.3 Simulation Results Considering SOC Limits

If the battery hits the SOC limits while operating in the coordinated control the upper control

strategy will disconnect the battery resulting the loss of coordination control.

Fig. 8.9 shows that at 0.45 second, the SOC of the battery hit the maximum SOC limit,

SOCMax = 0.908 and the battery is disconnected from the system. The battery will remain

disconnected until the battery control gets a command to discharge. It can be seen that at 0.57

106



www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.89

0.9

0.91

S
O

C
 S

ta
tu

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

Time (Hour)

P
ow

er
 (

M
W

)

 

 

PV

Battery

Total power

Charging Stopped

Discharging Started

Figure 8.9. Coordinated control of battery and PV considering SOC limits.

second, the PV power is less than 1 MW and the battery starts discharging resulting SOC to be

decreased.

8.2.3 HIL Experiments Results

The HIL testbed is built using a Programmable current source, programmable load, a battery

cell and OP 5600 RT- LAB device. Constant current charging and discharging mechanism has

been implemented to initiate the battery degradation study. Based on the battery SOC Vs voltage

characteristics provided by the manufacturer upper voltage limit is chosen to be 3.58 V and the

lower bound is chosen to be 3.1 V. Fig. 8.10 presents 60 hours of data collected through RT-LAB

with this setup. Fig. 8.11 illustrates the charging and discharging curves in detail.

The round-trip efficiency of the battery is calculated by using the graph presented in Fig. 8.12.

It can be seen that the stored energy during charging process is 138.26 VAh while discharged energy

is 130.36 VAh. Hence the round-trip efficiency of the battery is 94.3 % at the current operating

point.

The internal resistance of the battery can be obtained by referring to the Fig. 8.13. Since the

discharging of the battery can be represented by the equivalent circuit as shown in Fig. 8.14 the
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Figure 8.10. Measured voltage and current profiles of a single battery cell.
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Figure 8.11. Voltage and current profiles of a battery cell.
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Figure 8.12. Energy profile of the battery cell.
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Figure 8.13. Battery cell voltage profile for calculation of internal resistance.
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Figure 8.14. Resistance calculation circuit.

internal resistance can be calculated using,

Rint =
Voc − Vdischarge

Idischarge
(8.1)

The discharge current, Idischarge is set as 10 A. The internal resistance can be obtained as 6.8

mΩ by referring to Fig. 8.13 open circuit voltage curve .

8.3 Real-Time Modeling of Single-Phase PV in RT-LAB

Real time simulators have been widely used to simulate modern power systems with power

electronic components in real time. Some work can be found in the literature related to modeling

of power system components in the RT - LAB [76, 110, 111]. Single phase PV systems play a major

role in the domestic power generation and can be a major part of future microgrids. Hence it is

essential to have an accurate single phase PV model in RT- LAb for further simulations and studies.

This section is dedicated to model a detailed single-stage PV in RT-LAB. Here, Phase Locked Loop

(PLL), Proportional Resonance (PR) controller, Maximum Power Point Tracking (MPPT) control,

and converter is modeled in RT- LAB.

Fig. 8.15 presents the Real-time digital simulation setup with oscilloscopes connected to an RT

- LAB device to monitor real time simulation outputs.

Traditional two stage converters consist of DC to DC converter which will boost the DC voltage

and DC to AC converter which will connect the PV system to AC grid.
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8.3.1 System Configuration

Figure 8.15. Real-time digital simulation setup using RT-Lab.

However single stage converter has some advantages as: higher efficiency, lower price, and easier

implementation compared to two stage converters [69]. Hence single stage single phase PV system

which is illustrated in Fig. 8.16 is implemented.

Grid

bL aL

fCdcC
1G

1G

1G

1G

PVstring
 

Figure 8.16. System under investigation for simulation in RT-LAB, La = 10e − 3, Lb = 20e − 3,
Cf = 1e− 6, Cdc = 10e− 3.

PV array which is composed of 96 SunPowerSPR − 305 −WHT PV cells, which is modeled

in the RT-LAB. The PV array power rating is 2MW and voltage rating is 350V and consist of 1

parallel string, 8 series modules, open circuit voltage of 64.2 per cell, and short circuit current of

5.96 per cell.

8.3.2 PV Control

8.3.2.1 MPPT Control

Maximum Power Point Tracking (MPPT) strategy is utilized to absorb the maximum power

from PV cells at a given time. The incremental conductance technique where the output current and
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the voltage of the PV panel is used to calculate the conductance and incremental conductance is used

as the MPPT technique. Here the conductance ( IPV
VPV

) is compared with incremental conductance

( dIPV
dVPV

) and PV voltage will be changed accordingly to reach to the maximum power point [69]:

dP

dV
=
d(V.I)

dV
= I + V

dI

dV
= 0 (8.2)

dI

dV
= − I

V
(8.3)

Here, Maximum power is guaranteed when the conductance is equal to incremental conductance.

An integral regulator is utilized to minimize the error which is ( dIdV + I
V ). Fig 8.17 illustrates the

MPPT control digram implemented in the RT - LAB.
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Figure 8.17. The MPPT structure for single phase PV in RT-LAB.

The I-V characteristic of the PV and error curves are presented in Fig 8.18. As it can be seen

that dI
dV is always negative. Here, the error: dIdV + I

V will be 0 when θ1 = θ2 and in the left side

region from that point error is greater than zero and right hand side error is less than zero. When

the error is greater than zero current magnitude will be decreased and current magnitude will be

increased when error is less than zero to come back to zero error.
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Figure 8.18. Error signal description based on I-V characteristic of PV.

8.3.2.2 Proportional Controller (PR)

The main equation of PR controller can be mentioned as [112]:

FPR = Kp +Kr
s

s2 + (hω)2
(8.4)

The PR controller for single phase PV has been designed to compensate the high order frequencies

of: 3rd, 5th, 7th, and 9th. The block diagram of the proposed controller has been illustrated in Fig.

8.19.
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Figure 8.19. The PR controller structure for single phase PV.

The MPPT block provides to the reference current signal magnitude and it will be synchronized

with the grid voltage using a PLL. This synchronized current sin waveform will be compared with

actual current and the error signal will be fed to the PR controller. The output of the PR controller

is the voltage reference of the converter and will be sent to the pulse generation unit to switch the
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IGBTs. Since RT-LAb is using fixed step size for simulations the whole model has to build in

the discrete time domain. Discrete time domain model of the PR controller, considering the third

harmonic is illustrated in Fig. 8.19.

8.3.3 Case Studies

RT-LAB models in general consist of three main blocks: Master subsystem, Slave subsystem and

Console subsystem. Master subsystem in general includes the controls and hardware communication

models. It works as the brain of the model. The system components such as transmission lines,

generators machines, transformers and converters are modeled inside the slave block. Depend on

the system size one or more slave blocks can be included in one RT-LAB model. The console is

working as the Real time user interface and the monitor. These subsystems will have communication

between each other.

8.3.3.1 Normal Case

Normal operation of the PV system is simulated first to observe the PV model operation. A

step change to the irradiance is applied at 10 sec to see PV model response for a sudden irradiance

change.A ramp change is applied at 20 sec to see the PV system response to slow changes of

irradiance. These Irradiance change patterns are presented in Fig. 8.20.
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Figure 8.20. Irradiance change for PV in order to verify the stable operation.

The real time operation result of the PV system is illustrated in Fig. 8.21. These signals

are recorded from an oscilloscope connected to the RT-LAB device. Here, the first signal is the

reference current fed to the PR controller and the second signal is actual PV current. Third signal
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Figure 8.21. PV responses due to the irradiance change composed of ramp and step changes.

is the PV power and the last signal is the grid voltage which is supposed to be content thorough the

operation. Fig. 8.22 illustrated the PV current order and actual PV current. It can be observed

 

Figure 8.22. Comparison of reference current and measured current of the PV.

that the actual current follows the PV current order leading to stable operation.

Fig. 8.23 presents the PV response to the irradiance ramp change. It can be seen PV can

respond well to the slow irradiance changes. The PV response to the irradiance step change is

shown in Fig. 8.24 and the result shows that the built PV model can respond well to sudden

irradiance changes.

8.3.3.2 Experimental Case with External Input

Here the irradiance measurement is fed to the RT-LAB via its hardware input ports to make

the simulation more realistic. The irradiance level signal is created using Chroma Programmable

AC source model 61501 which is shown in Fig. 8.25.
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Figure 8.23. PV response to the ramp change in irradiance.

 

Figure 8.24. PV response to the step change in irradiance.

Figure 8.25. Chroma setup.
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A random irradiance signal is generated from the Chroma model and fed into the RT-LAB

device. Fig. 8.28 and Fig. 8.27 present the generated irradiance pattern and PV model response

to that. It can be observed that the PV system is able to follow the irradiance pattern accurately.

 

Figure 8.26. Measured irradiance by Chroma and PV output power.

Fig. 8.27 presents the reference current, measured actual current, PV power and grid voltage

waveforms recorded in an oscilloscope.

 

Figure 8.27. Results of the simulation with changing irradiance.

Fig. 8.28 shows the performance metric of the model. This performance matrix is obtained by

utilizing the Opmonitor Block in the RT-LAB. Here idle time is the idle time during the execution

of previous time step. It can be seen that the RT-LAB model is capable of doing required tasks

within the given step size. Here step size is 25 microseconds, but the computational time is well

below that. In fact the computational time is about 4 % (25−2425 ∗ 100%) of total time step resulting

minimum usage of the CPU. It can be seen that the number of overruns is zero throughout the

simulation process which clarify the perfect running conditions.
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Figure 8.28. Simulation results from opmonitor block.
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CHAPTER 9

CONCLUSIONS

This dissertation can be concluded as follows.

Initialization and steady state calculations for power systems with renewable energy penetration

are presented in chapter 3. Steady state calculations for a system with wind power integration and

initialization of an unbalanced system with the single phase PV system is conducted as case studies.

The dynamic phasor approach is utilized in the later case.

Chapter 4 and 5 present the capability of dynamic phasor and impedance modeling techniques.

First, the SSR problem in the TCSC compensated network is analyzed in detail to identify the

stability limits of the system. Chapter 5 develops a detailed model for unbalanced microgrid.

Single phase PV, induction machine, power factor correction and loads are modeled and analyzed

using small signal analysis.

Upper level control of a microgrid is presented in Chapter 6. The micro grid consists of a PV

system, wind farm, a battery storage and some loads. Prediction algorithms are proposed to predict

PV power, wind power and load power. Multi-horizon Optimization algorithm is developed and

implemented in real-time simulator to optimized power import of the microgrid by controlling the

battery power output.

Chapter 7 investigates the intermittent load applications in microgrid.A pulsed power load

is implemented as intermittent load and VSC based inverter is proposed to mitigate the system

dynamics due to the pulsed load behavior. A test bed for microgrid simulations using real time

simulator and hardware in loop is developed in chapter 8.
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